Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–175
Barendse GWM, Kepczynski J, Karssen CM, Koorneef M (1986) The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. Physiol Plant 67:315–319
Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564
[+]
Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–175
Barendse GWM, Kepczynski J, Karssen CM, Koorneef M (1986) The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. Physiol Plant 67:315–319
Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564
Bermejo A, Primo-Millo E, Agustí M, Mesejo C, Reig C, Iglesias DJ (2015) Hormonal profile in ovaries of mandarin varieties with different reproductive behaviour. J Plant Growth Regul 34:584–594
Bermejo A, Martínez-Alcántara B, Martínez-Cuenca MR, Yuste R, Mesejo C, Reig C, Agustí M, Primo-Millo E, Iglesias DJ (2016) Biosynthesis and content of gibberellins in seeded and seedless sweet orange (Citrus sinensis L. Osbeck) cultivars. J Plant Growth Regul 35:1036–1048
Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39
Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence process in pistols of Arabidopsis. Plant Physiol 154:163–172
De Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532
Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332
El-Otmani M, Lovatt CJ, Loggings CW Jr, Agusti M (1995) Plant Growth Regulators in Citriculture, Factors Regulating Endogenous Levels in Citrus Tissues. Crit Rev Plant Sci 14:367–412
Fos M, Nuez F, García-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480
Fos M, Proano K, Nuez F, García-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550
Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of Gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563
García-Hurtado N, Carrera E, Ruíz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813
Garcia-Martinez JL, Carbonell J (1980) Fruit set of unpollinated ovaries of Pisum sativum L. Influence of plant growth regulators. Planta 147:451–456
García-Martínez JL, García-Papi MA (1979) The influence of gibberellic acid, 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine on fruit set of Clementine mandarin. Sci Hortic 10:285–293
García-Martínez JL, Martí M, Sabater T, Maldonado A, Vercher Y (1991a) Development of fertilized ovules and their role in the growth of pea pod. Physiol Plant 83:411–416
García-Martínez JL, Santes C, Croker SJ, Hedden P (1991b) Identification, quantitation, and distribution of gibberellins in fruits of Pisum sativum cv. Alaska during pod development. Planta 184:53–60
García-Martínez JL, López-Díaz I, Sanchez-Beltrán MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084
García-Papi MA, García-Martinez JL (1984) Endogenous plant growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit set and development. Sci Hortic 22:265–274
Giacomelli L. Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64:4403–4419
Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451
Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acid Res 40(D1):D1178–D1186
Gorquet B, Van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139
Groot SPC, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellins in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71:184–190
Hazra P, Dutta AK, Chatterjee P (2010) Altered gibberellin and auxin levels in the ovaries in the manifestation of genetic parthenocarpy in tomato (Solanum lycopersicum). Current Sci 99:1439–1443
Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25
Hu J, Mitchum MJ, Barnaby N et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336
Huerta L, García-Lor A, García-Martínez JL (2009) Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizo citrange. Tree Physiol 29:569–577
Kojima K (1996) Changes of abscisic acid, indole-3-acetic acid and gibberellin-like substances in the flowers and developing fruitlets of citrus cultivar ‘Hyuganatsu’. Sci Hortic 65:263–272
Koltunow AM, Vivian-Smith A, Tucker MR, Paech N (2002) The central role of the ovule in apomixis and parthenocarpy. In: O´Neill SD, Roberts JA (eds) Plant reproduction. Academic, Sheffield, pp 221–256
Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin and bioactive gibberellin contents. J Plant Growth Regul 30:405–415
Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL (2010) Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J Plant Physiol 167:1188–1196
Mesejo C, Yuste R, Martinez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (C. clementina). Physiol Plant 148:87–96
Mesejo C, Yuste R, Reig C, Martinez-Fuentes A, Iglesias DJ, Muñoz-Frambuena N, Bermejo A, Germanà MA, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24
O´Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982
Ollimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888
Ozga JA, Reinecke DM (1999) Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development. Plant Growth Regul 27:33–38
Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81
Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146
Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462
Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329
Rieu I, Eriksson S, Powers SJ et al (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436
Rieu I, Ruiz-Rivero O, Fernandez-Garcia N et al (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504
Rodrigo MJ, García-Martínez JL, Santes CM, Gaskin P, Hedden P (1997) The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds. Planta 201:446–455
Ruan YL, Patric JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665
Santes CM, Hedden P, Gaskin P, García-Martínez JL (1995) Gibberellins and related compounds in young fruits of pea and their relationship to fruit set. Phytochemistry 40:1347–1355
Schwabe WW, Mills JJ (1981) Hormones and parthenocarpic fruit set. Hort Rev 51:661–698
Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111
Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007a) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257
Serrani JC, Fos M, Atares A, García-Martínez JL (2007b) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-torn of tomato. J Plant Growth Regul 26:211–221
Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934
Swain SM, Ross JJ, Reid JB, Kamiya Y (1995) Gibberellins and pea seed development: expression of the lhi, ls, and le5839 mutations. Planta 195:426–433
Talón M, Hedden P, Primo-Millo E (1990a) Gibberellins in Citrus sinensis: A comparison between seeded and seedless varieties. J Plant Growth Regul 9:201–206
Talón M, Zacarías L, Primo-Millo E (1990b) Hormonal changes associated with fruit set and development in mandarins differing in their parthenoarpic ability. Physiol Plant 79:400–406
Talón M, Zacarías L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581
Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251
Yan J, Yuan F, Long G, Qin L, Deng Z (2012) Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Reports 39:1831–1838
Yuste R (2015) Gibberellins regulate cell division and parthenocarpic fruit set in citrus. Doctoral Thesis. Dottorato di Ricerca in “Frutticoltura Mediterranea” Dipartimento Scienze Agrarie e Forestali—Facoltà di Agraria AGR/03. Università Degli Studi Di Palermo (pp. 129)
[-]