- -

Auxin and Gibberellin Interact in Citrus Fruit Set

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Auxin and Gibberellin Interact in Citrus Fruit Set

Show full item record

Bermejo, A.; Granero, B.; Mesejo Conejos, C.; Reig Valor, C.; Tejedo, V.; Agustí Fonfría, M.; Primo-Millo, E.... (2018). Auxin and Gibberellin Interact in Citrus Fruit Set. Journal of Plant Growth Regulation. 37(2):491-501. https://doi.org/10.1007/s00344-017-9748-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/123134

Files in this item

Item Metadata

Title: Auxin and Gibberellin Interact in Citrus Fruit Set
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Issued date:
Abstract:
[EN] Gibberellins (GA) and auxin (indole-3-acetic acid, IAA) are considered the main compounds involved in the induction of fruit set. Citrus trees flower profusely but exhibit dramatically low fruit set rates and, in ...[+]
Subjects: Citrus , Fruit set , Gibberellins , GA-oxidase genes , Indole-3-acetic acid , Sweet orange
Copyrigths: Cerrado
Source:
Journal of Plant Growth Regulation. (issn: 0721-7595 )
DOI: 10.1007/s00344-017-9748-9
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/s00344-017-9748-9
Thanks:
We thank Drs. Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. Thanks are due to Teresa Sabater from the IBMCP, for her ...[+]
Type: Artículo

References

Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–175

Barendse GWM, Kepczynski J, Karssen CM, Koorneef M (1986) The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. Physiol Plant 67:315–319

Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564 [+]
Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–175

Barendse GWM, Kepczynski J, Karssen CM, Koorneef M (1986) The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. Physiol Plant 67:315–319

Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564

Bermejo A, Primo-Millo E, Agustí M, Mesejo C, Reig C, Iglesias DJ (2015) Hormonal profile in ovaries of mandarin varieties with different reproductive behaviour. J Plant Growth Regul 34:584–594

Bermejo A, Martínez-Alcántara B, Martínez-Cuenca MR, Yuste R, Mesejo C, Reig C, Agustí M, Primo-Millo E, Iglesias DJ (2016) Biosynthesis and content of gibberellins in seeded and seedless sweet orange (Citrus sinensis L. Osbeck) cultivars. J Plant Growth Regul 35:1036–1048

Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39

Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence process in pistols of Arabidopsis. Plant Physiol 154:163–172

De Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532

Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332

El-Otmani M, Lovatt CJ, Loggings CW Jr, Agusti M (1995) Plant Growth Regulators in Citriculture, Factors Regulating Endogenous Levels in Citrus Tissues. Crit Rev Plant Sci 14:367–412

Fos M, Nuez F, García-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480

Fos M, Proano K, Nuez F, García-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550

Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of Gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

García-Hurtado N, Carrera E, Ruíz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813

Garcia-Martinez JL, Carbonell J (1980) Fruit set of unpollinated ovaries of Pisum sativum L. Influence of plant growth regulators. Planta 147:451–456

García-Martínez JL, García-Papi MA (1979) The influence of gibberellic acid, 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine on fruit set of Clementine mandarin. Sci Hortic 10:285–293

García-Martínez JL, Martí M, Sabater T, Maldonado A, Vercher Y (1991a) Development of fertilized ovules and their role in the growth of pea pod. Physiol Plant 83:411–416

García-Martínez JL, Santes C, Croker SJ, Hedden P (1991b) Identification, quantitation, and distribution of gibberellins in fruits of Pisum sativum cv. Alaska during pod development. Planta 184:53–60

García-Martínez JL, López-Díaz I, Sanchez-Beltrán MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084

García-Papi MA, García-Martinez JL (1984) Endogenous plant growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit set and development. Sci Hortic 22:265–274

Giacomelli L. Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64:4403–4419

Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acid Res 40(D1):D1178–D1186

Gorquet B, Van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139

Groot SPC, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellins in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71:184–190

Hazra P, Dutta AK, Chatterjee P (2010) Altered gibberellin and auxin levels in the ovaries in the manifestation of genetic parthenocarpy in tomato (Solanum lycopersicum). Current Sci 99:1439–1443

Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

Hu J, Mitchum MJ, Barnaby N et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336

Huerta L, García-Lor A, García-Martínez JL (2009) Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizo citrange. Tree Physiol 29:569–577

Kojima K (1996) Changes of abscisic acid, indole-3-acetic acid and gibberellin-like substances in the flowers and developing fruitlets of citrus cultivar ‘Hyuganatsu’. Sci Hortic 65:263–272

Koltunow AM, Vivian-Smith A, Tucker MR, Paech N (2002) The central role of the ovule in apomixis and parthenocarpy. In: O´Neill SD, Roberts JA (eds) Plant reproduction. Academic, Sheffield, pp 221–256

Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin and bioactive gibberellin contents. J Plant Growth Regul 30:405–415

Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL (2010) Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J Plant Physiol 167:1188–1196

Mesejo C, Yuste R, Martinez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (C. clementina). Physiol Plant 148:87–96

Mesejo C, Yuste R, Reig C, Martinez-Fuentes A, Iglesias DJ, Muñoz-Frambuena N, Bermejo A, Germanà MA, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24

O´Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

Ollimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888

Ozga JA, Reinecke DM (1999) Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development. Plant Growth Regul 27:33–38

Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81

Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146

Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462

Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329

Rieu I, Eriksson S, Powers SJ et al (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436

Rieu I, Ruiz-Rivero O, Fernandez-Garcia N et al (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

Rodrigo MJ, García-Martínez JL, Santes CM, Gaskin P, Hedden P (1997) The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds. Planta 201:446–455

Ruan YL, Patric JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665

Santes CM, Hedden P, Gaskin P, García-Martínez JL (1995) Gibberellins and related compounds in young fruits of pea and their relationship to fruit set. Phytochemistry 40:1347–1355

Schwabe WW, Mills JJ (1981) Hormones and parthenocarpic fruit set. Hort Rev 51:661–698

Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111

Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007a) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257

Serrani JC, Fos M, Atares A, García-Martínez JL (2007b) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-torn of tomato. J Plant Growth Regul 26:211–221

Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934

Swain SM, Ross JJ, Reid JB, Kamiya Y (1995) Gibberellins and pea seed development: expression of the lhi, ls, and le5839 mutations. Planta 195:426–433

Talón M, Hedden P, Primo-Millo E (1990a) Gibberellins in Citrus sinensis: A comparison between seeded and seedless varieties. J Plant Growth Regul 9:201–206

Talón M, Zacarías L, Primo-Millo E (1990b) Hormonal changes associated with fruit set and development in mandarins differing in their parthenoarpic ability. Physiol Plant 79:400–406

Talón M, Zacarías L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581

Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251

Yan J, Yuan F, Long G, Qin L, Deng Z (2012) Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Reports 39:1831–1838

Yuste R (2015) Gibberellins regulate cell division and parthenocarpic fruit set in citrus. Doctoral Thesis. Dottorato di Ricerca in “Frutticoltura Mediterranea” Dipartimento Scienze Agrarie e Forestali—Facoltà di Agraria AGR/03. Università Degli Studi Di Palermo (pp. 129)

[-]

This item appears in the following Collection(s)

Show full item record