Mostrar el registro sencillo del ítem
dc.contributor.author | Bermejo, Almudena | es_ES |
dc.contributor.author | Granero, B. | es_ES |
dc.contributor.author | Mesejo Conejos, Carlos | es_ES |
dc.contributor.author | Reig Valor, Carmina | es_ES |
dc.contributor.author | Tejedo, V. | es_ES |
dc.contributor.author | Agustí Fonfría, Manuel | es_ES |
dc.contributor.author | Primo-Millo, Eduardo | es_ES |
dc.contributor.author | Iglesias, Domingo | es_ES |
dc.date.accessioned | 2019-07-03T20:00:46Z | |
dc.date.available | 2019-07-03T20:00:46Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0721-7595 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123134 | |
dc.description.abstract | [EN] Gibberellins (GA) and auxin (indole-3-acetic acid, IAA) are considered the main compounds involved in the induction of fruit set. Citrus trees flower profusely but exhibit dramatically low fruit set rates and, in particular, seeded orange cultivars also require pollination for fruit to adequately set. Consequently, they represent an excellent model to investigate the interactions between both hormones and their effect on fruit set and development. Unpollinated ovaries from 'Pineapple' sweet orange trees were treated with IAA and pollinated ones with TIBA (2,3,5-triiodobenzoic acid, inhibitor of auxin transport), and changes in ovaries were registered shortly after the treatments. The highest IAA levels were found in unpollinated ovaries treated with auxin (twofold increase compared to pollinated ones), and the lowest corresponded to pollinated ones supplemented with TIBA (30% reduction). GA content also differed substantially among samples. In general, expression of the GA-biosynthetic gene GA20ox2 in the ovule and pericarp paralleled the changes in GA(20) content in both tissues, and also expression of GA3ox1 and GA(1) content but only in the ovule. The levels of these GA in unpollinated ovaries were promoted in response to exogenous IAA, whereas expression of the GA-inactivation gene GA2ox1 and the concentration of the GA-catabolite GA(8) were reduced by this treatment. Significantly, treatments with GA(3) or IAA to unpollinated ovaries recovered fruit set to the level reached by free pollinated ones. Our study demonstrates that IAA alters GA metabolism in citrus leading to marked changes in the active GA(1) levels in ovules and pericarp, mainly through the regulation of GA-biosynthetic genes and the inhibition of the catabolic pathway. | es_ES |
dc.description.sponsorship | We thank Drs. Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. Thanks are due to Teresa Sabater from the IBMCP, for her help. This work has been supported by two research projects, RTA2013-00024-CO2-01 from INIA (Ministerio de Economia y Competitividad, Spain) and IVIA-51423 from Conselleria de Agricultura (Generalitat Valenciana, Valencia, Spain). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Plant Growth Regulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Citrus | es_ES |
dc.subject | Fruit set | es_ES |
dc.subject | Gibberellins | es_ES |
dc.subject | GA-oxidase genes | es_ES |
dc.subject | Indole-3-acetic acid | es_ES |
dc.subject | Sweet orange | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Auxin and Gibberellin Interact in Citrus Fruit Set | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00344-017-9748-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2013-00024-C02-01/ES/Estudio de factores bioquímicos, fisiológicos y moleculares relacionados con la alternancia de cosechas en cítricos/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/IVIA//IVIA-51423/ | |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Bermejo, A.; Granero, B.; Mesejo Conejos, C.; Reig Valor, C.; Tejedo, V.; Agustí Fonfría, M.; Primo-Millo, E.... (2018). Auxin and Gibberellin Interact in Citrus Fruit Set. Journal of Plant Growth Regulation. 37(2):491-501. https://doi.org/10.1007/s00344-017-9748-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00344-017-9748-9 | es_ES |
dc.description.upvformatpinicio | 491 | es_ES |
dc.description.upvformatpfin | 501 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 37 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\364675 | es_ES |
dc.contributor.funder | Institut Valencià d'Investigacions Agràries | |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–175 | es_ES |
dc.description.references | Barendse GWM, Kepczynski J, Karssen CM, Koorneef M (1986) The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. Physiol Plant 67:315–319 | es_ES |
dc.description.references | Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564 | es_ES |
dc.description.references | Bermejo A, Primo-Millo E, Agustí M, Mesejo C, Reig C, Iglesias DJ (2015) Hormonal profile in ovaries of mandarin varieties with different reproductive behaviour. J Plant Growth Regul 34:584–594 | es_ES |
dc.description.references | Bermejo A, Martínez-Alcántara B, Martínez-Cuenca MR, Yuste R, Mesejo C, Reig C, Agustí M, Primo-Millo E, Iglesias DJ (2016) Biosynthesis and content of gibberellins in seeded and seedless sweet orange (Citrus sinensis L. Osbeck) cultivars. J Plant Growth Regul 35:1036–1048 | es_ES |
dc.description.references | Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39 | es_ES |
dc.description.references | Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence process in pistols of Arabidopsis. Plant Physiol 154:163–172 | es_ES |
dc.description.references | De Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532 | es_ES |
dc.description.references | Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332 | es_ES |
dc.description.references | El-Otmani M, Lovatt CJ, Loggings CW Jr, Agusti M (1995) Plant Growth Regulators in Citriculture, Factors Regulating Endogenous Levels in Citrus Tissues. Crit Rev Plant Sci 14:367–412 | es_ES |
dc.description.references | Fos M, Nuez F, García-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480 | es_ES |
dc.description.references | Fos M, Proano K, Nuez F, García-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550 | es_ES |
dc.description.references | Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of Gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563 | es_ES |
dc.description.references | García-Hurtado N, Carrera E, Ruíz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813 | es_ES |
dc.description.references | Garcia-Martinez JL, Carbonell J (1980) Fruit set of unpollinated ovaries of Pisum sativum L. Influence of plant growth regulators. Planta 147:451–456 | es_ES |
dc.description.references | García-Martínez JL, García-Papi MA (1979) The influence of gibberellic acid, 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine on fruit set of Clementine mandarin. Sci Hortic 10:285–293 | es_ES |
dc.description.references | García-Martínez JL, Martí M, Sabater T, Maldonado A, Vercher Y (1991a) Development of fertilized ovules and their role in the growth of pea pod. Physiol Plant 83:411–416 | es_ES |
dc.description.references | García-Martínez JL, Santes C, Croker SJ, Hedden P (1991b) Identification, quantitation, and distribution of gibberellins in fruits of Pisum sativum cv. Alaska during pod development. Planta 184:53–60 | es_ES |
dc.description.references | García-Martínez JL, López-Díaz I, Sanchez-Beltrán MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084 | es_ES |
dc.description.references | García-Papi MA, García-Martinez JL (1984) Endogenous plant growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit set and development. Sci Hortic 22:265–274 | es_ES |
dc.description.references | Giacomelli L. Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64:4403–4419 | es_ES |
dc.description.references | Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451 | es_ES |
dc.description.references | Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acid Res 40(D1):D1178–D1186 | es_ES |
dc.description.references | Gorquet B, Van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139 | es_ES |
dc.description.references | Groot SPC, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellins in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71:184–190 | es_ES |
dc.description.references | Hazra P, Dutta AK, Chatterjee P (2010) Altered gibberellin and auxin levels in the ovaries in the manifestation of genetic parthenocarpy in tomato (Solanum lycopersicum). Current Sci 99:1439–1443 | es_ES |
dc.description.references | Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25 | es_ES |
dc.description.references | Hu J, Mitchum MJ, Barnaby N et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336 | es_ES |
dc.description.references | Huerta L, García-Lor A, García-Martínez JL (2009) Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizo citrange. Tree Physiol 29:569–577 | es_ES |
dc.description.references | Kojima K (1996) Changes of abscisic acid, indole-3-acetic acid and gibberellin-like substances in the flowers and developing fruitlets of citrus cultivar ‘Hyuganatsu’. Sci Hortic 65:263–272 | es_ES |
dc.description.references | Koltunow AM, Vivian-Smith A, Tucker MR, Paech N (2002) The central role of the ovule in apomixis and parthenocarpy. In: O´Neill SD, Roberts JA (eds) Plant reproduction. Academic, Sheffield, pp 221–256 | es_ES |
dc.description.references | Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin and bioactive gibberellin contents. J Plant Growth Regul 30:405–415 | es_ES |
dc.description.references | Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL (2010) Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J Plant Physiol 167:1188–1196 | es_ES |
dc.description.references | Mesejo C, Yuste R, Martinez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (C. clementina). Physiol Plant 148:87–96 | es_ES |
dc.description.references | Mesejo C, Yuste R, Reig C, Martinez-Fuentes A, Iglesias DJ, Muñoz-Frambuena N, Bermejo A, Germanà MA, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24 | es_ES |
dc.description.references | O´Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982 | es_ES |
dc.description.references | Ollimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888 | es_ES |
dc.description.references | Ozga JA, Reinecke DM (1999) Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development. Plant Growth Regul 27:33–38 | es_ES |
dc.description.references | Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81 | es_ES |
dc.description.references | Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146 | es_ES |
dc.description.references | Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462 | es_ES |
dc.description.references | Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329 | es_ES |
dc.description.references | Rieu I, Eriksson S, Powers SJ et al (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436 | es_ES |
dc.description.references | Rieu I, Ruiz-Rivero O, Fernandez-Garcia N et al (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504 | es_ES |
dc.description.references | Rodrigo MJ, García-Martínez JL, Santes CM, Gaskin P, Hedden P (1997) The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds. Planta 201:446–455 | es_ES |
dc.description.references | Ruan YL, Patric JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665 | es_ES |
dc.description.references | Santes CM, Hedden P, Gaskin P, García-Martínez JL (1995) Gibberellins and related compounds in young fruits of pea and their relationship to fruit set. Phytochemistry 40:1347–1355 | es_ES |
dc.description.references | Schwabe WW, Mills JJ (1981) Hormones and parthenocarpic fruit set. Hort Rev 51:661–698 | es_ES |
dc.description.references | Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111 | es_ES |
dc.description.references | Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007a) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257 | es_ES |
dc.description.references | Serrani JC, Fos M, Atares A, García-Martínez JL (2007b) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-torn of tomato. J Plant Growth Regul 26:211–221 | es_ES |
dc.description.references | Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934 | es_ES |
dc.description.references | Swain SM, Ross JJ, Reid JB, Kamiya Y (1995) Gibberellins and pea seed development: expression of the lhi, ls, and le5839 mutations. Planta 195:426–433 | es_ES |
dc.description.references | Talón M, Hedden P, Primo-Millo E (1990a) Gibberellins in Citrus sinensis: A comparison between seeded and seedless varieties. J Plant Growth Regul 9:201–206 | es_ES |
dc.description.references | Talón M, Zacarías L, Primo-Millo E (1990b) Hormonal changes associated with fruit set and development in mandarins differing in their parthenoarpic ability. Physiol Plant 79:400–406 | es_ES |
dc.description.references | Talón M, Zacarías L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581 | es_ES |
dc.description.references | Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251 | es_ES |
dc.description.references | Yan J, Yuan F, Long G, Qin L, Deng Z (2012) Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Reports 39:1831–1838 | es_ES |
dc.description.references | Yuste R (2015) Gibberellins regulate cell division and parthenocarpic fruit set in citrus. Doctoral Thesis. Dottorato di Ricerca in “Frutticoltura Mediterranea” Dipartimento Scienze Agrarie e Forestali—Facoltà di Agraria AGR/03. Università Degli Studi Di Palermo (pp. 129) | es_ES |