- -

Auxin and Gibberellin Interact in Citrus Fruit Set

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Auxin and Gibberellin Interact in Citrus Fruit Set

Show simple item record

Files in this item

dc.contributor.author Bermejo, Almudena es_ES
dc.contributor.author Granero, B. es_ES
dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Tejedo, V. es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.contributor.author Primo-Millo, Eduardo es_ES
dc.contributor.author Iglesias, Domingo es_ES
dc.date.accessioned 2019-07-03T20:00:46Z
dc.date.available 2019-07-03T20:00:46Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0721-7595 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123134
dc.description.abstract [EN] Gibberellins (GA) and auxin (indole-3-acetic acid, IAA) are considered the main compounds involved in the induction of fruit set. Citrus trees flower profusely but exhibit dramatically low fruit set rates and, in particular, seeded orange cultivars also require pollination for fruit to adequately set. Consequently, they represent an excellent model to investigate the interactions between both hormones and their effect on fruit set and development. Unpollinated ovaries from 'Pineapple' sweet orange trees were treated with IAA and pollinated ones with TIBA (2,3,5-triiodobenzoic acid, inhibitor of auxin transport), and changes in ovaries were registered shortly after the treatments. The highest IAA levels were found in unpollinated ovaries treated with auxin (twofold increase compared to pollinated ones), and the lowest corresponded to pollinated ones supplemented with TIBA (30% reduction). GA content also differed substantially among samples. In general, expression of the GA-biosynthetic gene GA20ox2 in the ovule and pericarp paralleled the changes in GA(20) content in both tissues, and also expression of GA3ox1 and GA(1) content but only in the ovule. The levels of these GA in unpollinated ovaries were promoted in response to exogenous IAA, whereas expression of the GA-inactivation gene GA2ox1 and the concentration of the GA-catabolite GA(8) were reduced by this treatment. Significantly, treatments with GA(3) or IAA to unpollinated ovaries recovered fruit set to the level reached by free pollinated ones. Our study demonstrates that IAA alters GA metabolism in citrus leading to marked changes in the active GA(1) levels in ovules and pericarp, mainly through the regulation of GA-biosynthetic genes and the inhibition of the catabolic pathway. es_ES
dc.description.sponsorship We thank Drs. Isabel Lopez-Diaz and Esther Carrera for the hormone quantification carried out at the Plant Hormone Quantification Service, IBMCP, Valencia, Spain. Thanks are due to Teresa Sabater from the IBMCP, for her help. This work has been supported by two research projects, RTA2013-00024-CO2-01 from INIA (Ministerio de Economia y Competitividad, Spain) and IVIA-51423 from Conselleria de Agricultura (Generalitat Valenciana, Valencia, Spain). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation INIA/RTA2013-00024-CO2-01
dc.relation IVIA/IVIA-51423
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus es_ES
dc.subject Fruit set es_ES
dc.subject Gibberellins es_ES
dc.subject GA-oxidase genes es_ES
dc.subject Indole-3-acetic acid es_ES
dc.subject Sweet orange es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Auxin and Gibberellin Interact in Citrus Fruit Set es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00344-017-9748-9 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Bermejo, A.; Granero, B.; Mesejo Conejos, C.; Reig Valor, C.; Tejedo, V.; Agustí Fonfría, M.; Primo-Millo, E.... (2018). Auxin and Gibberellin Interact in Citrus Fruit Set. Journal of Plant Growth Regulation. 37(2):491-501. https://doi.org/10.1007/s00344-017-9748-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00344-017-9748-9 es_ES
dc.description.upvformatpinicio 491 es_ES
dc.description.upvformatpfin 501 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 37 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\364675 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
dc.contributor.funder Institut Valencià d'Investigacions Agràries
dc.relation.references Ali-Dinar HM, Krezdorn AH, Wheaton TA (1988) The sexual-hormonal relation in citrus during fruit set. Acta Hortic 218:159–175 es_ES
dc.relation.references Barendse GWM, Kepczynski J, Karssen CM, Koorneef M (1986) The role of endogenous gibberellins during fruit and seed development: studies on gibberellin-deficient genotypes of Arabidopsis thaliana. Physiol Plant 67:315–319 es_ES
dc.relation.references Ben-Cheikh W, Perez-Botella J, Tadeo FR, Talón M, Primo-Millo E (1997) Pollination increases gibberellin levels in developing ovaries of seeded varieties of citrus. Plant Physiol 114:557–564 es_ES
dc.relation.references Bermejo A, Primo-Millo E, Agustí M, Mesejo C, Reig C, Iglesias DJ (2015) Hormonal profile in ovaries of mandarin varieties with different reproductive behaviour. J Plant Growth Regul 34:584–594 es_ES
dc.relation.references Bermejo A, Martínez-Alcántara B, Martínez-Cuenca MR, Yuste R, Mesejo C, Reig C, Agustí M, Primo-Millo E, Iglesias DJ (2016) Biosynthesis and content of gibberellins in seeded and seedless sweet orange (Citrus sinensis L. Osbeck) cultivars. J Plant Growth Regul 35:1036–1048 es_ES
dc.relation.references Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Mol Endocrinol 29:23–39 es_ES
dc.relation.references Carbonell-Bejerano P, Urbez C, Carbonell J, Granell A, Perez-Amador MA (2010) A fertilization-independent developmental program triggers partial fruit development and senescence process in pistols of Arabidopsis. Plant Physiol 154:163–172 es_ES
dc.relation.references De Jong M, Mariani C, Vriezen WH (2009) The role of auxin and gibberellin in tomato fruit set. J Exp Bot 60:1523–1532 es_ES
dc.relation.references Dorcey E, Urbez C, Blazquez MA, Carbonell J, Perez-Amador MA (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. Plant J 58:318–332 es_ES
dc.relation.references El-Otmani M, Lovatt CJ, Loggings CW Jr, Agusti M (1995) Plant Growth Regulators in Citriculture, Factors Regulating Endogenous Levels in Citrus Tissues. Crit Rev Plant Sci 14:367–412 es_ES
dc.relation.references Fos M, Nuez F, García-Martinez JL (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–480 es_ES
dc.relation.references Fos M, Proano K, Nuez F, García-Martinez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550 es_ES
dc.relation.references Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of Gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563 es_ES
dc.relation.references García-Hurtado N, Carrera E, Ruíz-Rivero O, López-Gresa MP, Hedden P, Gong F, García-Martínez JL (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813 es_ES
dc.relation.references Garcia-Martinez JL, Carbonell J (1980) Fruit set of unpollinated ovaries of Pisum sativum L. Influence of plant growth regulators. Planta 147:451–456 es_ES
dc.relation.references García-Martínez JL, García-Papi MA (1979) The influence of gibberellic acid, 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine on fruit set of Clementine mandarin. Sci Hortic 10:285–293 es_ES
dc.relation.references García-Martínez JL, Martí M, Sabater T, Maldonado A, Vercher Y (1991a) Development of fertilized ovules and their role in the growth of pea pod. Physiol Plant 83:411–416 es_ES
dc.relation.references García-Martínez JL, Santes C, Croker SJ, Hedden P (1991b) Identification, quantitation, and distribution of gibberellins in fruits of Pisum sativum cv. Alaska during pod development. Planta 184:53–60 es_ES
dc.relation.references García-Martínez JL, López-Díaz I, Sanchez-Beltrán MJ, Phillips AL, Ward DA, Gaskin P, Hedden P (1997) Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol Biol 33:1073–1084 es_ES
dc.relation.references García-Papi MA, García-Martinez JL (1984) Endogenous plant growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit set and development. Sci Hortic 22:265–274 es_ES
dc.relation.references Giacomelli L. Rota-Stabelli O, Masuero D, Acheampong AK, Moretto M, Caputi L, Vrhovsek U, Moser C (2013) Gibberellin metabolism in Vitis vinifera L. during bloom and fruit set: functional characterization and evolution of grapevine gibberellin oxidases. J Exp Bot 64:4403–4419 es_ES
dc.relation.references Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451 es_ES
dc.relation.references Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acid Res 40(D1):D1178–D1186 es_ES
dc.relation.references Gorquet B, Van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139 es_ES
dc.relation.references Groot SPC, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellins in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71:184–190 es_ES
dc.relation.references Hazra P, Dutta AK, Chatterjee P (2010) Altered gibberellin and auxin levels in the ovaries in the manifestation of genetic parthenocarpy in tomato (Solanum lycopersicum). Current Sci 99:1439–1443 es_ES
dc.relation.references Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25 es_ES
dc.relation.references Hu J, Mitchum MJ, Barnaby N et al (2008) Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20:320–336 es_ES
dc.relation.references Huerta L, García-Lor A, García-Martínez JL (2009) Characterization of gibberellin 20-oxidases in the citrus hybrid Carrizo citrange. Tree Physiol 29:569–577 es_ES
dc.relation.references Kojima K (1996) Changes of abscisic acid, indole-3-acetic acid and gibberellin-like substances in the flowers and developing fruitlets of citrus cultivar ‘Hyuganatsu’. Sci Hortic 65:263–272 es_ES
dc.relation.references Koltunow AM, Vivian-Smith A, Tucker MR, Paech N (2002) The central role of the ovule in apomixis and parthenocarpy. In: O´Neill SD, Roberts JA (eds) Plant reproduction. Academic, Sheffield, pp 221–256 es_ES
dc.relation.references Mariotti L, Picciarelli P, Lombardi L, Ceccarelli N (2011) Fruit set and early fruit growth in tomato are associated with increases in indoleacetic acid, cytokinin and bioactive gibberellin contents. J Plant Growth Regul 30:405–415 es_ES
dc.relation.references Martí E, Carrera E, Ruiz-Rivero O, García-Martínez JL (2010) Hormonal regulation of tomato gibberellin 20-oxidase1 expressed in Arabidopsis. J Plant Physiol 167:1188–1196 es_ES
dc.relation.references Mesejo C, Yuste R, Martinez-Fuentes A, Reig C, Iglesias DJ, Primo-Millo E, Agustí M (2013) Self-pollination and parthenocarpic ability in developing ovaries of self-incompatible Clementine mandarins (C. clementina). Physiol Plant 148:87–96 es_ES
dc.relation.references Mesejo C, Yuste R, Reig C, Martinez-Fuentes A, Iglesias DJ, Muñoz-Frambuena N, Bermejo A, Germanà MA, Primo-Millo E, Agustí M (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic Citrus species. Plant Sci 247:13–24 es_ES
dc.relation.references O´Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982 es_ES
dc.relation.references Ollimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888 es_ES
dc.relation.references Ozga JA, Reinecke DM (1999) Interaction of 4-chloroindole-3-acetic acid and gibberellins in early pea fruit development. Plant Growth Regul 27:33–38 es_ES
dc.relation.references Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81 es_ES
dc.relation.references Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seeds. Plant Physiol 131:1137–1146 es_ES
dc.relation.references Ozga JA, Reinecke DM, Ayele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462 es_ES
dc.relation.references Pandolfini T, Molesini B, Spena A (2007) Molecular dissection of the role of auxin in fruit initiation. Trends Plant Sci 12:327–329 es_ES
dc.relation.references Rieu I, Eriksson S, Powers SJ et al (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436 es_ES
dc.relation.references Rieu I, Ruiz-Rivero O, Fernandez-Garcia N et al (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504 es_ES
dc.relation.references Rodrigo MJ, García-Martínez JL, Santes CM, Gaskin P, Hedden P (1997) The role of gibberellins A1 and A3 in fruit growth of Pisum sativum L. and the identification of gibberellins A4 and A7 in young seeds. Planta 201:446–455 es_ES
dc.relation.references Ruan YL, Patric JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Sci 17:656–665 es_ES
dc.relation.references Santes CM, Hedden P, Gaskin P, García-Martínez JL (1995) Gibberellins and related compounds in young fruits of pea and their relationship to fruit set. Phytochemistry 40:1347–1355 es_ES
dc.relation.references Schwabe WW, Mills JJ (1981) Hormones and parthenocarpic fruit set. Hort Rev 51:661–698 es_ES
dc.relation.references Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111 es_ES
dc.relation.references Serrani JC, Sanjuan R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007a) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145:246–257 es_ES
dc.relation.references Serrani JC, Fos M, Atares A, García-Martínez JL (2007b) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv micro-torn of tomato. J Plant Growth Regul 26:211–221 es_ES
dc.relation.references Serrani JC, Ruiz-Rivero O, Fos M, García-Martínez JL (2008) Auxin-induced fruit-set in tomato is mediated in part by gibberellins. Plant J 56:922–934 es_ES
dc.relation.references Swain SM, Ross JJ, Reid JB, Kamiya Y (1995) Gibberellins and pea seed development: expression of the lhi, ls, and le5839 mutations. Planta 195:426–433 es_ES
dc.relation.references Talón M, Hedden P, Primo-Millo E (1990a) Gibberellins in Citrus sinensis: A comparison between seeded and seedless varieties. J Plant Growth Regul 9:201–206 es_ES
dc.relation.references Talón M, Zacarías L, Primo-Millo E (1990b) Hormonal changes associated with fruit set and development in mandarins differing in their parthenoarpic ability. Physiol Plant 79:400–406 es_ES
dc.relation.references Talón M, Zacarías L, Primo-Millo E (1992) Gibberellins and parthenocarpic ability in developing ovaries of seedless mandarins. Plant Physiol 99:1575–1581 es_ES
dc.relation.references Yamaguchi S (2008) Gibberellin metabolism and its regulation. Ann Rev Plant Biol 59:225–251 es_ES
dc.relation.references Yan J, Yuan F, Long G, Qin L, Deng Z (2012) Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Mol Biol Reports 39:1831–1838 es_ES
dc.relation.references Yuste R (2015) Gibberellins regulate cell division and parthenocarpic fruit set in citrus. Doctoral Thesis. Dottorato di Ricerca in “Frutticoltura Mediterranea” Dipartimento Scienze Agrarie e Forestali—Facoltà di Agraria AGR/03. Università Degli Studi Di Palermo (pp. 129) es_ES


This item appears in the following Collection(s)

Show simple item record