- -

A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli

Show full item record

Daros Arnau, JA.; Aragones, V.; Cordero-Cucart, MT. (2018). A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli. Scientific Reports. 8:1-9. https://doi.org/10.1038/s41598-018-20314-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/123195

Files in this item

Item Metadata

Title: A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli
Author:
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Viruses have been engineered into useful biotechnological tools for gene therapy or to induce the synthesis of products of interest, such as therapeutic proteins and vaccines, in animal and fungal cells, bacteria or ...[+]
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-018-20314-3
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-018-20314-3
Thanks:
This work was supported by grant BIO2014-54269-R and BIO2017-83184-R from the Spanish Ministerio de Economia, Industria y Competitividad (co-financed FEDER funds).
Type: Artículo

References

Di Serio, F. et al. Current status of viroid taxonomy. Arch. Virol. 159, 3467–3478 (2014).

Branch, A. D. & Robertson, H. D. A replication cycle for viroids and other small infectious RNAs. Science 223, 450–455 (1984).

Branch, A. D., Benenfeld, B. J. & Robertson, H. D. Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proc. Natl. Acad. Sci. USA 85, 9128–9132 (1988). [+]
Di Serio, F. et al. Current status of viroid taxonomy. Arch. Virol. 159, 3467–3478 (2014).

Branch, A. D. & Robertson, H. D. A replication cycle for viroids and other small infectious RNAs. Science 223, 450–455 (1984).

Branch, A. D., Benenfeld, B. J. & Robertson, H. D. Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proc. Natl. Acad. Sci. USA 85, 9128–9132 (1988).

Daròs, J. A., Marcos, J. F., Hernández, C. & Flores, R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc. Natl. Acad. Sci. USA 91, 12813–12817 (1994).

Mühlbach, H. P. & Sänger, H. L. Viroid replication is inhibited by a-amanitin. Nature 278, 185–188 (1979).

Navarro, J. A., Vera, A. & Flores, R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268, 218–225 (2000).

Gas, M. E., Molina-Serrano, D., Hernández, C., Flores, R. & Daròs, J. A. Monomeric linear RNA of Citrus exocortis viroid resulting from processing in vivo has 5′-phosphomonoester and 3′-hydroxyl termini: implications for the RNase and RNA ligase involved in replication. J. Virol. 82, 10321–10325 (2008).

Nohales, M. A., Flores, R. & Daròs, J. A. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc. Natl. Acad. Sci. USA 109, 13805–13810 (2012).

Nohales, M. A., Molina-Serrano, D., Flores, R. & Daròs, J. A. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J. Virol 86, 8269–8276 (2012).

Forster, A. C. & Symons, R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220 (1987).

Forster, A. C., Davies, C., Sheldon, C. C., Jeffries, A. C. & Symons, R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265–267 (1988).

Daròs, J. A. Eggplant latent viroid: a friendly experimental system in the family. Avsunviroidae. Mol. Plant Pathol. 17, 1170–1177 (2016).

Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011).

Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

Englert, M. et al. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie 89, 1351–1365 (2007).

Côté, F. & Perreault, J. P. Peach latent mosaic viroid is locked by a 2′,5′-phosphodiester bond produced by in vitro self-ligation. J. Mol. Biol. 273, 533–543 (1997).

Côté, F., Lévesque, D. & Perreault, J. P. Natural 2′,5′-phosphodiester bonds found at the ligation sites of peach latent mosaic viroid. J. Virol. 75, 19–25 (2001).

Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

Martínez, F., Marqués, J., Salvador, M. L. & Daròs, J. A. Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast. J. Gen. Virol. 90, 3057–3065 (2009).

Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

Ponchon, L. & Dardel, F. Recombinant RNA technology: the tRNA scaffold. Nat. Methods 4, 571–576 (2007).

Ponchon, L. et al. Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Res 41, e150 (2013).

Batey, R. T. Advances in methods for native expression and purification of RNA for structural studies. Curr. Opin. Struct. Biol. 26C, 1–8 (2014).

Diener, T. O. Viroids: “living fossils” of primordial RNAs? Biol. Direct 11 (2016).

Navarro, B. et al. Viroids: How to infect a host and cause disease without encoding proteins. Biochimie 94, 1474–1480 (2012).

Engler, C. & Marillonnet, S. Golden Gate cloning. Methods Mol. Biol. 1116, 119–131 (2014).

[-]

This item appears in the following Collection(s)

Show full item record