Mostrar el registro sencillo del ítem
dc.contributor.author | DAROS ARNAU, JOSE ANTONIO | es_ES |
dc.contributor.author | Aragones, V | es_ES |
dc.contributor.author | Cordero-Cucart, María Teresa | es_ES |
dc.date.accessioned | 2019-07-04T20:00:41Z | |
dc.date.available | 2019-07-04T20:00:41Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/123195 | |
dc.description.abstract | [EN] Viruses have been engineered into useful biotechnological tools for gene therapy or to induce the synthesis of products of interest, such as therapeutic proteins and vaccines, in animal and fungal cells, bacteria or plants. Viroids are a particular class of infectious agents of higher plants that exclusively consist of a small non-protein-coding circular RNA molecule. In the same way as viruses have been transformed into useful biotechnological devices, can viroids be converted into beneficial tools? We show herein that, by expressing Eggplant latent viroid (ELVd) derived RNAs in Escherichia coli together with the eggplant tRNA ligase, this being the enzyme involved in viroid circularization in the infected plant, RNAs of interest like aptamers, extended hairpins, or other structured RNAs are produced in amounts of tens of milligrams per liter of culture. Although ELVd fails to replicate in E. coli, ELVd precursors self-cleave through the embedded hammerhead ribozymes and the resulting monomers are, in part, circularized by the co-expressed enzyme. The mature viroid forms and the protein likely form a ribonucleoprotein complex that transitorily accumulates in E. coli cells at extraordinarily amounts. | es_ES |
dc.description.sponsorship | This work was supported by grant BIO2014-54269-R and BIO2017-83184-R from the Spanish Ministerio de Economia, Industria y Competitividad (co-financed FEDER funds). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.title | A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41598-018-20314-3 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-54269-R/ES/INSTRUMENTOS BIOTECNOLOGICOS DERIVADOS DE VIRUS DE PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-83184-R/ES/VIRUS DE PLANTAS: PATOGENOS Y TAMBIEN VECTORES PARA LA PRODUCCION DE PROTEINAS, METABOLITOS, RNAS Y NANOPARTICULAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Daros Arnau, JA.; Aragones, V.; Cordero-Cucart, MT. (2018). A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli. Scientific Reports. 8:1-9. https://doi.org/10.1038/s41598-018-20314-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41598-018-20314-3 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.pmid | 29382906 | en_EN |
dc.identifier.pmcid | PMC5789856 | en_EN |
dc.relation.pasarela | S\382293 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Di Serio, F. et al. Current status of viroid taxonomy. Arch. Virol. 159, 3467–3478 (2014). | es_ES |
dc.description.references | Branch, A. D. & Robertson, H. D. A replication cycle for viroids and other small infectious RNAs. Science 223, 450–455 (1984). | es_ES |
dc.description.references | Branch, A. D., Benenfeld, B. J. & Robertson, H. D. Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proc. Natl. Acad. Sci. USA 85, 9128–9132 (1988). | es_ES |
dc.description.references | Daròs, J. A., Marcos, J. F., Hernández, C. & Flores, R. Replication of avocado sunblotch viroid: evidence for a symmetric pathway with two rolling circles and hammerhead ribozyme processing. Proc. Natl. Acad. Sci. USA 91, 12813–12817 (1994). | es_ES |
dc.description.references | Mühlbach, H. P. & Sänger, H. L. Viroid replication is inhibited by a-amanitin. Nature 278, 185–188 (1979). | es_ES |
dc.description.references | Navarro, J. A., Vera, A. & Flores, R. A chloroplastic RNA polymerase resistant to tagetitoxin is involved in replication of avocado sunblotch viroid. Virology 268, 218–225 (2000). | es_ES |
dc.description.references | Gas, M. E., Molina-Serrano, D., Hernández, C., Flores, R. & Daròs, J. A. Monomeric linear RNA of Citrus exocortis viroid resulting from processing in vivo has 5′-phosphomonoester and 3′-hydroxyl termini: implications for the RNase and RNA ligase involved in replication. J. Virol. 82, 10321–10325 (2008). | es_ES |
dc.description.references | Nohales, M. A., Flores, R. & Daròs, J. A. Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proc. Natl. Acad. Sci. USA 109, 13805–13810 (2012). | es_ES |
dc.description.references | Nohales, M. A., Molina-Serrano, D., Flores, R. & Daròs, J. A. Involvement of the chloroplastic isoform of tRNA ligase in the replication of viroids belonging to the family Avsunviroidae. J. Virol 86, 8269–8276 (2012). | es_ES |
dc.description.references | Forster, A. C. & Symons, R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell 49, 211–220 (1987). | es_ES |
dc.description.references | Forster, A. C., Davies, C., Sheldon, C. C., Jeffries, A. C. & Symons, R. H. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265–267 (1988). | es_ES |
dc.description.references | Daròs, J. A. Eggplant latent viroid: a friendly experimental system in the family. Avsunviroidae. Mol. Plant Pathol. 17, 1170–1177 (2016). | es_ES |
dc.description.references | Paige, J. S., Wu, K. Y. & Jaffrey, S. R. RNA mimics of green fluorescent protein. Science 333, 642–646 (2011). | es_ES |
dc.description.references | Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). | es_ES |
dc.description.references | Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015). | es_ES |
dc.description.references | Englert, M. et al. Plant pre-tRNA splicing enzymes are targeted to multiple cellular compartments. Biochimie 89, 1351–1365 (2007). | es_ES |
dc.description.references | Côté, F. & Perreault, J. P. Peach latent mosaic viroid is locked by a 2′,5′-phosphodiester bond produced by in vitro self-ligation. J. Mol. Biol. 273, 533–543 (1997). | es_ES |
dc.description.references | Côté, F., Lévesque, D. & Perreault, J. P. Natural 2′,5′-phosphodiester bonds found at the ligation sites of peach latent mosaic viroid. J. Virol. 75, 19–25 (2001). | es_ES |
dc.description.references | Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004). | es_ES |
dc.description.references | Martínez, F., Marqués, J., Salvador, M. L. & Daròs, J. A. Mutational analysis of eggplant latent viroid RNA processing in Chlamydomonas reinhardtii chloroplast. J. Gen. Virol. 90, 3057–3065 (2009). | es_ES |
dc.description.references | Timmons, L., Court, D. L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001). | es_ES |
dc.description.references | Ponchon, L. & Dardel, F. Recombinant RNA technology: the tRNA scaffold. Nat. Methods 4, 571–576 (2007). | es_ES |
dc.description.references | Ponchon, L. et al. Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology. Nucleic Acids Res 41, e150 (2013). | es_ES |
dc.description.references | Batey, R. T. Advances in methods for native expression and purification of RNA for structural studies. Curr. Opin. Struct. Biol. 26C, 1–8 (2014). | es_ES |
dc.description.references | Diener, T. O. Viroids: “living fossils” of primordial RNAs? Biol. Direct 11 (2016). | es_ES |
dc.description.references | Navarro, B. et al. Viroids: How to infect a host and cause disease without encoding proteins. Biochimie 94, 1474–1480 (2012). | es_ES |
dc.description.references | Engler, C. & Marillonnet, S. Golden Gate cloning. Methods Mol. Biol. 1116, 119–131 (2014). | es_ES |