- -

Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors

Show full item record

Marín-Morales, J.; Higuera-Trujillo, JL.; Greco, A.; Guixeres Provinciale, J.; Llinares Millán, MDC.; Scilingo, EP.; Alcañiz Raya, ML.... (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports. 8:1-15. https://doi.org/10.1038/s41598-018-32063-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/123197

Files in this item

Item Metadata

Title: Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors
UPV Unit: Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà
Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica
Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Issued date:
[EN] Affective Computing has emerged as an important field of study that aims to develop systems that can automatically recognize emotions. Up to the present, elicitation has been carried out with nonimmersive stimuli. ...[+]
Subjects: Affective computing , Affective elicitation , Emotion elicitation , Emotion recognition , Virtual reality , Immersive virtual environment , Architecture , Neuroarchitecture , Electroencephalographic , Heart rate variability
Copyrigths: Reconocimiento (by)
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-018-32063-4
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-018-32063-4
This work was supported by the Ministerio de Economia y Competitividad. Spain (Project TIN2013-45736-R).
Type: Artículo


Picard, R. W. Affective computing. (MIT press, 1997).

Picard, R. W. Affective Computing: Challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003).

Jerritta, S., Murugappan, M., Nagarajan, R. & Wan, K. Physiological signals based human emotion Recognition: a review. Signal Process. its Appl. (CSPA), 2011 IEEE 7th Int. Colloq. 410–415, https://doi.org/10.1109/CSPA.2011.5759912 (2011). [+]
Picard, R. W. Affective computing. (MIT press, 1997).

Picard, R. W. Affective Computing: Challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003).

Jerritta, S., Murugappan, M., Nagarajan, R. & Wan, K. Physiological signals based human emotion Recognition: a review. Signal Process. its Appl. (CSPA), 2011 IEEE 7th Int. Colloq. 410–415, https://doi.org/10.1109/CSPA.2011.5759912 (2011).

Harms, M. B., Martin, A. & Wallace, G. L. Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychol. Rev. 20, 290–322 (2010).

Koolagudi, S. G. & Rao, K. S. Emotion recognition from speech: A review. Int. J. Speech Technol. 15, 99–117 (2012).

Gross, J. J. & Levenson, R. W. Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995).

Lindal, P. J. & Hartig, T. Architectural variation, building height, and the restorative quality of urban residential streetscapes. J. Environ. Psychol. 33, 26–36 (2013).

Ulrich, R. View through a window may influence recovery from surgery. Science (80-.). 224, 420–421 (1984).

Fernández-Caballero, A. et al. Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016).

Ekman, P. Basic Emotions. Handbook of cognition and emotion 45–60, https://doi.org/10.1017/S0140525X0800349X (1999).

Posner, J., Russell, J. A. & Peterson, B. S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–34 (2005).

Russell, J. A. & Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977).

Calvo, R. A. & D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010).

Valenza, G. et al. Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150176 (2016).

Valenza, G., Lanata, A. & Scilingo, E. P. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3, 237–249 (2012).

Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P. & Barbieri, R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci. Rep. 4, 4998 (2014).

Valenza, G. et al. Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE J. Biomed. Heal. Informatics 18, 1625–1635 (2014).

Piwek, L., Ellis, D. A., Andrews, S. & Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 13, 1–9 (2016).

Xu, J., Mitra, S., Van Hoof, C., Yazicioglu, R. & Makinwa, K. A. A. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology. IEEE Rev. Biomed. Eng. 3333, 1–1 (2017).

Kumari, P., Mathew, L. & Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90, 298–307 (2017).

He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds Yang, C., Virk, G. S. & Yang, H.) 15–25. https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017).

Nakisa, B., Rastgoo, M. N., Tjondronegoro, D. & Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018).

Kory Jacqueline, D. & Sidney, K. Affect Elicitation for Affective Computing. In The Oxford Handbook of Affective Computing 371–383 (2014).

Ekman, P. The directed facial action task. In Handbook of emotion elicitation and assessment 47–53 (2007).

Harmon-Jones, E., Amodio, D. M. & Zinner, L. R. Social psychological methods of emotion elicitation. Handb. Emot. elicitation Assess. 91–105, https://doi.org/10.2224/sbp.2007.35.7.863 (2007)

Roberts, N. A., Tsai, J. L. & Coan, J. A. Emotion elicitation using dyadic interaction task. Handbook of Emotion Elicitation and Assessment 106–123 (2007).

Nardelli, M., Valenza, G., Greco, A., Lanata, A. & Scilingo, E. P. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans. Affect. Comput. 6, 385–394 (2015).

Kim, J. Emotion Recognition Using Speech and Physiological Changes. Robust Speech Recognit. Underst. 265–280 (2007).

Soleymani, M., Pantic, M. & Pun, T. Multimodal emotion recognition in response to videos (Extended abstract). 2015 Int. Conf. Affect. Comput. Intell. Interact. ACII 2015 3, 491–497 (2015).

Baños, R. M. et al. Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology Behav. 7, 734–741 (2004).

Giglioli, I. A. C., Pravettoni, G., Martín, D. L. S., Parra, E. & Raya, M. A. A novel integrating virtual reality approach for the assessment of the attachment behavioral system. Front. Psychol. 8, 1–7 (2017).

Marín-Morales, J., Torrecilla, C., Guixeres, J. & Llinares, C. Methodological bases for a new platform for the measurement of human behaviour in virtual environments. DYNA 92, 34–38 (2017).

Vince, J. Introduction to virtual reality. (Media, Springer Science & Business, 2004).

Alcañiz, M., Baños, R., Botella, C. & Rey, B. The EMMA Project: Emotions as a Determinant of Presence. PsychNology J. 1, 141–150 (2003).

Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015).

Slater, M. & Wilbur, S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 6, 603–616 (1997).

Riva, G. et al. Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology Behav. 10, 45–56 (2007).

Baños, R. M. et al Changing induced moods via virtual reality. In International Conference on Persuasive Technology (ed. Springer, Berlin, H.) 7–15, https://doi.org/10.1007/11755494_3 (2006).

Baños, R. M. et al. Positive mood induction procedures for virtual environments designed for elderly people. Interact. Comput. 24, 131–138 (2012).

Gorini, A. et al. Emotional Response to Virtual Reality Exposure across Different Cultures: The Role of the AttributionProcess. CyberPsychology Behav. 12, 699–705 (2009).

Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F. & Riva, G. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behav. Soc. Netw. 14, 99–105 (2011).

Chirico, A. et al. Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study. Sci. Rep. 7, 1–11 (2017).

Blascovich, J. et al. Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychol. Inq. 7965, 103–124 (2012).

Peperkorn, H. M., Alpers, G. W. & Mühlberger, A. Triggers of fear: Perceptual cues versus conceptual information in spider phobia. J. Clin. Psychol. 70, 704–714 (2014).

McCall, C., Hildebrandt, L. K., Bornemann, B. & Singer, T. Physiophenomenology in retrospect: Memory reliably reflects physiological arousal during a prior threatening experience. Conscious. Cogn. 38, 60–70 (2015).

Hildebrandt, L. K., Mccall, C., Engen, H. G. & Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 53, 880–890 (2016).

Notzon, S. et al. Psychophysiological effects of an iTBS modulated virtual reality challenge including participants with spider phobia. Biol. Psychol. 112, 66–76 (2015).

Amaral, C. P., Simões, M. A., Mouga, S., Andrade, J. & Castelo-Branco, M. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study. J. Neurosci. Methods 290, 105–115 (2017).

Eudave, L. & Valencia, M. Physiological response while driving in an immersive virtual environment. 2017 IEEE 14th Int. Conf. Wearable Implant. Body Sens. Networks 145–148, https://doi.org/10.1109/BSN.2017.7936028 (2017).

Sharma, G. et al. Influence of landmarks on wayfinding and brain connectivity in immersive virtual reality environment. Front. Psychol. 8, 1–12 (2017).

Bian, Y. et al. A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Pers. Ubiquitous Comput. 20, 821–832 (2016).

Egan, D. et al. An evaluation of Heart Rate and Electrodermal Activity as an Objective QoE Evaluation method for Immersive Virtual Reality Environments. 3–8, https://doi.org/10.1109/QoMEX.2016.7498964 (2016).

Meehan, M., Razzaque, S., Insko, B., Whitton, M. & Brooks, F. P. Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30, 239–258 (2005).

Higuera-Trujillo, J. L., López-Tarruella Maldonado, J. & Llinares Millán, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 65, 398–409 (2016).

Felnhofer, A. et al. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 82, 48–56 (2015).

Anderson, A. P. et al. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerosp. Med. Hum. Perform. 88, 520–526 (2017).

Higuera, J. L. et al. Emotional cartography in design: A novel technique to represent emotional states altered by spaces. In D and E 2016: 10th International Conference on Design and Emotion 561–566 (2016).

Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).

Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994).

Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. NIMH Cent. Study Emot. Atten. 39–58, https://doi.org/10.1027/0269-8803/a000147 (1997).

Nanda, U., Pati, D., Ghamari, H. & Bajema, R. Lessons from neuroscience: form follows function, emotions follow form. Intell. Build. Int. 5, 61–78 (2013).

Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980).

Sejima, K. Kazuyo Sejima. 1988–1996. El Croquis 15 (1996).

Ochiai, H. et al. Physiological and Psychological Effects of Forest Therapy on Middle-Aged Males with High-NormalBlood Pressure. Int. J. Environ. Res. Public Health 12, 2532–2542 (2015).

Noguchi, H. & Sakaguchi, T. Effect of illuminance and color temperature on lowering of physiological activity. Appl. Hum. Sci. 18, 117–123 (1999).

Küller, R., Mikellides, B. & Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 34, 141–152 (2009).

Yildirim, K., Hidayetoglu, M. L. & Capanoglu, A. Effects of interior colors on mood and preference: comparisons of two living rooms. Percept. Mot. Skills 112, 509–524 (2011).

Hogg, J., Goodman, S., Porter, T., Mikellides, B. & Preddy, D. E. Dimensions and determinants of judgements of colour samples and a simulated interior space by architects and non‐architects. Br. J. Psychol. 70, 231–242 (1979).

Jalil, N. A., Yunus, R. M. & Said, N. S. Environmental Colour Impact upon Human Behaviour: A Review. Procedia - Soc. Behav. Sci. 35, 54–62 (2012).

Jacobs, K. W. & Hustmyer, F. E. Effects of four psychological primary colors on GSR, heart rate and respiration rate. Percept. Mot. Skills 38, 763–766 (1974).

Jin, H. R., Yu, M., Kim, D. W., Kim, N. G. & Chung, A. S. W. Study on Physiological Responses to Color Stimulation. In International Association of Societies of Design Research (ed. Poggenpohl, S.) 1969–1979 (Korean Society of Design Science, 2009).

Vartanian, O. et al. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. 110, 1–8 (2013).

Tsunetsugu, Y., Miyazaki, Y. & Sato, H. Visual effects of interior design in actual-size living rooms on physiological responses. Build. Environ. 40, 1341–1346 (2005).

Stamps, A. E. Physical Determinants of Preferences for Residential Facades. Environ. Behav. 31, 723–751 (1999).

Berlyne, D. E. Novelty, Complexity, and Hedonic Value. Percept. Psychophys. 8, 279–286 (1970).

Krueger, R. A. & Casey, M. Focus groups: a practical guide for applied research. (Sage Publications, 2000).

Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: A review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006).

Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O. & Karjalainen, P. A. Kubios HRV - Heart rate variability analysis software. Comput. Methods Programs Biomed. 113, 210–220 (2014).

Pan, J. & Tompkins, W. J. A real-time QRS detection algorithm. Biomed. Eng. IEEE Trans. 1, 230–236 (1985).

Tarvainen, M. P., Ranta-aho, P. O. & Karjalainen, P. A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49, 172–175 (2002).

Valenza, G. et al. Predicting Mood Changes in Bipolar Disorder Through HeartbeatNonlinear Dynamics. IEEE J. Biomed. Heal. Informatics 20, 1034–1043 (2016).

Pincus, S. & Viscarello, R. Approximate Entropy A regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79, 249–255 (1992).

Richman, J. & Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Hear. Circ Physiol 278, H2039–H2049 (2000).

Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995).

Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983).

Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

Colomer Granero, A. et al. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Front. Comput. Neurosci. 10, 1–14 (2016).

Kober, S. E., Kurzmann, J. & Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 83, 365–374 (2012).

Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000).

Welch, P. D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Aver. aging Over Short, Modified Periodograms. IEEE Trans. AUDIO Electroacoust. 15, 70–73 (1967).

Mormann, F., Lehnertz, K., David, P. & Elger, E. C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144, 358–369 (2000).

Jolliffe, I. T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 30, 487 (2002).

Schöllkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural Comput 12, 1207–1245 (2000).

Yan, K. & Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators, B Chem. 212, 353–363 (2015).

Chang, C.-C. & Lin, C.-J. Libsvm: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011).

Lewis, P. A., Critchley, H. D., Rotshtein, P. & Dolan, R. J. Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748 (2007).

McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M. & Singer, T. Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Comput. Human Behav. 59, 93–107 (2016).

Blake, J. & Gurocak, H. B. Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatronics 14, 606–615 (2009).

Heydarian, A. et al. Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Autom. Constr. 54, 116–126 (2015).

Kuliga, S. F., Thrash, T., Dalton, R. C. & Hölscher, C. Virtual reality as an empirical research tool - Exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2015).

Yeom, D., Choi, J.-H. & Zhu, Y. Investigation of the Physiological Differences between Immersive Virtual Environment and Indoor Enviorment in a Building. Indoor adn Built Enviornment 0, Accept (2017).

Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015).

He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds. Yang, C., Virk, G. S. & Yang, H.) 15–25, https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017).


This item appears in the following Collection(s)

Show full item record