- -

Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors

Show simple item record

Files in this item

dc.contributor.author Marín-Morales, Javier es_ES
dc.contributor.author Higuera-Trujillo, Juan Luis es_ES
dc.contributor.author Greco, Alberto es_ES
dc.contributor.author Guixeres Provinciale, Jaime es_ES
dc.contributor.author Llinares Millán, María del Carmen es_ES
dc.contributor.author Scilingo, Enzo Pasquale es_ES
dc.contributor.author Alcañiz Raya, Mariano Luis es_ES
dc.contributor.author Valenza, Gaetano es_ES
dc.date.accessioned 2019-07-04T20:01:03Z
dc.date.available 2019-07-04T20:01:03Z
dc.date.issued 2018 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123197
dc.description.abstract [EN] Affective Computing has emerged as an important field of study that aims to develop systems that can automatically recognize emotions. Up to the present, elicitation has been carried out with nonimmersive stimuli. This study, on the other hand, aims to develop an emotion recognition system for affective states evoked through Immersive Virtual Environments. Four alternative virtual rooms were designed to elicit four possible arousal-valence combinations, as described in each quadrant of the Circumplex Model of Affects. An experiment involving the recording of the electroencephalography (EEG) and electrocardiography (ECG) of sixty participants was carried out. A set of features was extracted from these signals using various state-of-the-art metrics that quantify brain and cardiovascular linear and nonlinear dynamics, which were input into a Support Vector Machine classifier to predict the subject's arousal and valence perception. The model's accuracy was 75.00% along the arousal dimension and 71.21% along the valence dimension. Our findings validate the use of Immersive Virtual Environments to elicit and automatically recognize different emotional states from neural and cardiac dynamics; this development could have novel applications in fields as diverse as Architecture, Health, Education and Videogames. es_ES
dc.description.sponsorship This work was supported by the Ministerio de Economia y Competitividad. Spain (Project TIN2013-45736-R). es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Affective computing es_ES
dc.subject Affective elicitation es_ES
dc.subject Emotion elicitation es_ES
dc.subject Emotion recognition es_ES
dc.subject Virtual reality es_ES
dc.subject Immersive virtual environment es_ES
dc.subject Architecture es_ES
dc.subject Neuroarchitecture es_ES
dc.subject Electroencephalographic es_ES
dc.subject Heart rate variability es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-018-32063-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-45736-R/ES/INVESTIGACION DE NUEVAS METRICAS DE NEUROARQUITECTURA MEDIANTE EL USO DE ENTORNOS VIRTUALES INMERSIVOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-069449/ES/BES-2014-069449/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano - Institut Interuniversitari d'Investigació en Bioenginyeria i Tecnologia Orientada a l'Ésser Humà es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Marín-Morales, J.; Higuera-Trujillo, JL.; Greco, A.; Guixeres Provinciale, J.; Llinares Millán, MDC.; Scilingo, EP.; Alcañiz Raya, ML.... (2018). Affective computing in virtual reality: emotion recognition from brain and heartbeat dynamics using wearable sensors. Scientific Reports. 8:1-15. https://doi.org/10.1038/s41598-018-32063-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-018-32063-4 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.relation.pasarela S\368079 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Picard, R. W. Affective computing. (MIT press, 1997). es_ES
dc.description.references Picard, R. W. Affective Computing: Challenges. Int. J. Hum. Comput. Stud. 59, 55–64 (2003). es_ES
dc.description.references Jerritta, S., Murugappan, M., Nagarajan, R. & Wan, K. Physiological signals based human emotion Recognition: a review. Signal Process. its Appl. (CSPA), 2011 IEEE 7th Int. Colloq. 410–415, https://doi.org/10.1109/CSPA.2011.5759912 (2011). es_ES
dc.description.references Harms, M. B., Martin, A. & Wallace, G. L. Facial emotion recognition in autism spectrum disorders: A review of behavioral and neuroimaging studies. Neuropsychol. Rev. 20, 290–322 (2010). es_ES
dc.description.references Koolagudi, S. G. & Rao, K. S. Emotion recognition from speech: A review. Int. J. Speech Technol. 15, 99–117 (2012). es_ES
dc.description.references Gross, J. J. & Levenson, R. W. Emotion elicitation using films. Cogn. Emot. 9, 87–108 (1995). es_ES
dc.description.references Lindal, P. J. & Hartig, T. Architectural variation, building height, and the restorative quality of urban residential streetscapes. J. Environ. Psychol. 33, 26–36 (2013). es_ES
dc.description.references Ulrich, R. View through a window may influence recovery from surgery. Science (80-.). 224, 420–421 (1984). es_ES
dc.description.references Fernández-Caballero, A. et al. Smart environment architecture for emotion detection and regulation. J. Biomed. Inform. 64, 55–73 (2016). es_ES
dc.description.references Ekman, P. Basic Emotions. Handbook of cognition and emotion 45–60, https://doi.org/10.1017/S0140525X0800349X (1999). es_ES
dc.description.references Posner, J., Russell, J. A. & Peterson, B. S. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 17, 715–34 (2005). es_ES
dc.description.references Russell, J. A. & Mehrabian, A. Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977). es_ES
dc.description.references Calvo, R. A. & D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1, 18–37 (2010). es_ES
dc.description.references Valenza, G. et al. Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20150176 (2016). es_ES
dc.description.references Valenza, G., Lanata, A. & Scilingo, E. P. The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3, 237–249 (2012). es_ES
dc.description.references Valenza, G., Citi, L., Lanatá, A., Scilingo, E. P. & Barbieri, R. Revealing real-time emotional responses: a personalized assessment based on heartbeat dynamics. Sci. Rep. 4, 4998 (2014). es_ES
dc.description.references Valenza, G. et al. Wearable monitoring for mood recognition in bipolar disorder based on history-dependent long-term heart rate variability analysis. IEEE J. Biomed. Heal. Informatics 18, 1625–1635 (2014). es_ES
dc.description.references Piwek, L., Ellis, D. A., Andrews, S. & Joinson, A. The Rise of Consumer Health Wearables: Promises and Barriers. PLoS Med. 13, 1–9 (2016). es_ES
dc.description.references Xu, J., Mitra, S., Van Hoof, C., Yazicioglu, R. & Makinwa, K. A. A. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology. IEEE Rev. Biomed. Eng. 3333, 1–1 (2017). es_ES
dc.description.references Kumari, P., Mathew, L. & Syal, P. Increasing trend of wearables and multimodal interface for human activity monitoring: A review. Biosens. Bioelectron. 90, 298–307 (2017). es_ES
dc.description.references He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds Yang, C., Virk, G. S. & Yang, H.) 15–25. https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017). es_ES
dc.description.references Nakisa, B., Rastgoo, M. N., Tjondronegoro, D. & Chandran, V. Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018). es_ES
dc.description.references Kory Jacqueline, D. & Sidney, K. Affect Elicitation for Affective Computing. In The Oxford Handbook of Affective Computing 371–383 (2014). es_ES
dc.description.references Ekman, P. The directed facial action task. In Handbook of emotion elicitation and assessment 47–53 (2007). es_ES
dc.description.references Harmon-Jones, E., Amodio, D. M. & Zinner, L. R. Social psychological methods of emotion elicitation. Handb. Emot. elicitation Assess. 91–105, https://doi.org/10.2224/sbp.2007.35.7.863 (2007) es_ES
dc.description.references Roberts, N. A., Tsai, J. L. & Coan, J. A. Emotion elicitation using dyadic interaction task. Handbook of Emotion Elicitation and Assessment 106–123 (2007). es_ES
dc.description.references Nardelli, M., Valenza, G., Greco, A., Lanata, A. & Scilingo, E. P. Recognizing emotions induced by affective sounds through heart rate variability. IEEE Trans. Affect. Comput. 6, 385–394 (2015). es_ES
dc.description.references Kim, J. Emotion Recognition Using Speech and Physiological Changes. Robust Speech Recognit. Underst. 265–280 (2007). es_ES
dc.description.references Soleymani, M., Pantic, M. & Pun, T. Multimodal emotion recognition in response to videos (Extended abstract). 2015 Int. Conf. Affect. Comput. Intell. Interact. ACII 2015 3, 491–497 (2015). es_ES
dc.description.references Baños, R. M. et al. Immersion and Emotion: Their Impact on the Sense of Presence. CyberPsychology Behav. 7, 734–741 (2004). es_ES
dc.description.references Giglioli, I. A. C., Pravettoni, G., Martín, D. L. S., Parra, E. & Raya, M. A. A novel integrating virtual reality approach for the assessment of the attachment behavioral system. Front. Psychol. 8, 1–7 (2017). es_ES
dc.description.references Marín-Morales, J., Torrecilla, C., Guixeres, J. & Llinares, C. Methodological bases for a new platform for the measurement of human behaviour in virtual environments. DYNA 92, 34–38 (2017). es_ES
dc.description.references Vince, J. Introduction to virtual reality. (Media, Springer Science & Business, 2004). es_ES
dc.description.references Alcañiz, M., Baños, R., Botella, C. & Rey, B. The EMMA Project: Emotions as a Determinant of Presence. PsychNology J. 1, 141–150 (2003). es_ES
dc.description.references Vecchiato, G. et al. Neurophysiological correlates of embodiment and motivational factors during the perception of virtual architectural environments. Cogn. Process. 16, 425–429 (2015). es_ES
dc.description.references Slater, M. & Wilbur, S. A Framework for Immersive Virtual Environments (FIVE): Speculations on the Role of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 6, 603–616 (1997). es_ES
dc.description.references Riva, G. et al. Affective Interactions Using Virtual Reality: The Link between Presence and Emotions. CyberPsychology Behav. 10, 45–56 (2007). es_ES
dc.description.references Baños, R. M. et al Changing induced moods via virtual reality. In International Conference on Persuasive Technology (ed. Springer, Berlin, H.) 7–15, https://doi.org/10.1007/11755494_3 (2006). es_ES
dc.description.references Baños, R. M. et al. Positive mood induction procedures for virtual environments designed for elderly people. Interact. Comput. 24, 131–138 (2012). es_ES
dc.description.references Gorini, A. et al. Emotional Response to Virtual Reality Exposure across Different Cultures: The Role of the AttributionProcess. CyberPsychology Behav. 12, 699–705 (2009). es_ES
dc.description.references Gorini, A., Capideville, C. S., De Leo, G., Mantovani, F. & Riva, G. The Role of Immersion and Narrative in Mediated Presence: The Virtual Hospital Experience. Cyberpsychology, Behav. Soc. Netw. 14, 99–105 (2011). es_ES
dc.description.references Chirico, A. et al. Effectiveness of Immersive Videos in Inducing Awe: An Experimental Study. Sci. Rep. 7, 1–11 (2017). es_ES
dc.description.references Blascovich, J. et al. Immersive Virtual Environment Technology as a Methodological Tool for Social Psychology. Psychol. Inq. 7965, 103–124 (2012). es_ES
dc.description.references Peperkorn, H. M., Alpers, G. W. & Mühlberger, A. Triggers of fear: Perceptual cues versus conceptual information in spider phobia. J. Clin. Psychol. 70, 704–714 (2014). es_ES
dc.description.references McCall, C., Hildebrandt, L. K., Bornemann, B. & Singer, T. Physiophenomenology in retrospect: Memory reliably reflects physiological arousal during a prior threatening experience. Conscious. Cogn. 38, 60–70 (2015). es_ES
dc.description.references Hildebrandt, L. K., Mccall, C., Engen, H. G. & Singer, T. Cognitive flexibility, heart rate variability, and resilience predict fine-grained regulation of arousal during prolonged threat. Psychophysiology 53, 880–890 (2016). es_ES
dc.description.references Notzon, S. et al. Psychophysiological effects of an iTBS modulated virtual reality challenge including participants with spider phobia. Biol. Psychol. 112, 66–76 (2015). es_ES
dc.description.references Amaral, C. P., Simões, M. A., Mouga, S., Andrade, J. & Castelo-Branco, M. A novel Brain Computer Interface for classification of social joint attention in autism and comparison of 3 experimental setups: A feasibility study. J. Neurosci. Methods 290, 105–115 (2017). es_ES
dc.description.references Eudave, L. & Valencia, M. Physiological response while driving in an immersive virtual environment. 2017 IEEE 14th Int. Conf. Wearable Implant. Body Sens. Networks 145–148, https://doi.org/10.1109/BSN.2017.7936028 (2017). es_ES
dc.description.references Sharma, G. et al. Influence of landmarks on wayfinding and brain connectivity in immersive virtual reality environment. Front. Psychol. 8, 1–12 (2017). es_ES
dc.description.references Bian, Y. et al. A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Pers. Ubiquitous Comput. 20, 821–832 (2016). es_ES
dc.description.references Egan, D. et al. An evaluation of Heart Rate and Electrodermal Activity as an Objective QoE Evaluation method for Immersive Virtual Reality Environments. 3–8, https://doi.org/10.1109/QoMEX.2016.7498964 (2016). es_ES
dc.description.references Meehan, M., Razzaque, S., Insko, B., Whitton, M. & Brooks, F. P. Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30, 239–258 (2005). es_ES
dc.description.references Higuera-Trujillo, J. L., López-Tarruella Maldonado, J. & Llinares Millán, C. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality. Appl. Ergon. 65, 398–409 (2016). es_ES
dc.description.references Felnhofer, A. et al. Is virtual reality emotionally arousing? Investigating five emotion inducing virtual park scenarios. Int. J. Hum. Comput. Stud. 82, 48–56 (2015). es_ES
dc.description.references Anderson, A. P. et al. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality. Aerosp. Med. Hum. Perform. 88, 520–526 (2017). es_ES
dc.description.references Higuera, J. L. et al. Emotional cartography in design: A novel technique to represent emotional states altered by spaces. In D and E 2016: 10th International Conference on Design and Emotion 561–566 (2016). es_ES
dc.description.references Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001). es_ES
dc.description.references Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25, 49–59 (1994). es_ES
dc.description.references Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International Affective Picture System (IAPS): Technical Manual and Affective Ratings. NIMH Cent. Study Emot. Atten. 39–58, https://doi.org/10.1027/0269-8803/a000147 (1997). es_ES
dc.description.references Nanda, U., Pati, D., Ghamari, H. & Bajema, R. Lessons from neuroscience: form follows function, emotions follow form. Intell. Build. Int. 5, 61–78 (2013). es_ES
dc.description.references Russell, J. A. A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980). es_ES
dc.description.references Sejima, K. Kazuyo Sejima. 1988–1996. El Croquis 15 (1996). es_ES
dc.description.references Ochiai, H. et al. Physiological and Psychological Effects of Forest Therapy on Middle-Aged Males with High-NormalBlood Pressure. Int. J. Environ. Res. Public Health 12, 2532–2542 (2015). es_ES
dc.description.references Noguchi, H. & Sakaguchi, T. Effect of illuminance and color temperature on lowering of physiological activity. Appl. Hum. Sci. 18, 117–123 (1999). es_ES
dc.description.references Küller, R., Mikellides, B. & Janssens, J. Color, arousal, and performance—A comparison of three experiments. Color Res. Appl. 34, 141–152 (2009). es_ES
dc.description.references Yildirim, K., Hidayetoglu, M. L. & Capanoglu, A. Effects of interior colors on mood and preference: comparisons of two living rooms. Percept. Mot. Skills 112, 509–524 (2011). es_ES
dc.description.references Hogg, J., Goodman, S., Porter, T., Mikellides, B. & Preddy, D. E. Dimensions and determinants of judgements of colour samples and a simulated interior space by architects and non‐architects. Br. J. Psychol. 70, 231–242 (1979). es_ES
dc.description.references Jalil, N. A., Yunus, R. M. & Said, N. S. Environmental Colour Impact upon Human Behaviour: A Review. Procedia - Soc. Behav. Sci. 35, 54–62 (2012). es_ES
dc.description.references Jacobs, K. W. & Hustmyer, F. E. Effects of four psychological primary colors on GSR, heart rate and respiration rate. Percept. Mot. Skills 38, 763–766 (1974). es_ES
dc.description.references Jin, H. R., Yu, M., Kim, D. W., Kim, N. G. & Chung, A. S. W. Study on Physiological Responses to Color Stimulation. In International Association of Societies of Design Research (ed. Poggenpohl, S.) 1969–1979 (Korean Society of Design Science, 2009). es_ES
dc.description.references Vartanian, O. et al. Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. 110, 1–8 (2013). es_ES
dc.description.references Tsunetsugu, Y., Miyazaki, Y. & Sato, H. Visual effects of interior design in actual-size living rooms on physiological responses. Build. Environ. 40, 1341–1346 (2005). es_ES
dc.description.references Stamps, A. E. Physical Determinants of Preferences for Residential Facades. Environ. Behav. 31, 723–751 (1999). es_ES
dc.description.references Berlyne, D. E. Novelty, Complexity, and Hedonic Value. Percept. Psychophys. 8, 279–286 (1970). es_ES
dc.description.references Krueger, R. A. & Casey, M. Focus groups: a practical guide for applied research. (Sage Publications, 2000). es_ES
dc.description.references Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M. & Suri, J. S. Heart rate variability: A review. Med. Biol. Eng. Comput. 44, 1031–1051 (2006). es_ES
dc.description.references Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-aho, P. O. & Karjalainen, P. A. Kubios HRV - Heart rate variability analysis software. Comput. Methods Programs Biomed. 113, 210–220 (2014). es_ES
dc.description.references Pan, J. & Tompkins, W. J. A real-time QRS detection algorithm. Biomed. Eng. IEEE Trans. 1, 230–236 (1985). es_ES
dc.description.references Tarvainen, M. P., Ranta-aho, P. O. & Karjalainen, P. A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 49, 172–175 (2002). es_ES
dc.description.references Valenza, G. et al. Predicting Mood Changes in Bipolar Disorder Through HeartbeatNonlinear Dynamics. IEEE J. Biomed. Heal. Informatics 20, 1034–1043 (2016). es_ES
dc.description.references Pincus, S. & Viscarello, R. Approximate Entropy A regularity measure for fetal heart rate analysis. Obstet. Gynecol. 79, 249–255 (1992). es_ES
dc.description.references Richman, J. & Moorman, J. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Hear. Circ Physiol 278, H2039–H2049 (2000). es_ES
dc.description.references Peng, C.-K., Havlin, S., Stanley, H. E. & Goldberger, A. L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995). es_ES
dc.description.references Grassberger, P. & Procaccia, I. Characterization of strange attractors. Phys. Rev. Lett. 50, 346–349 (1983). es_ES
dc.description.references Delorme, A. & Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004). es_ES
dc.description.references Colomer Granero, A. et al. A Comparison of Physiological Signal Analysis Techniques and Classifiers for Automatic Emotional Evaluation of Audiovisual Contents. Front. Comput. Neurosci. 10, 1–14 (2016). es_ES
dc.description.references Kober, S. E., Kurzmann, J. & Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 83, 365–374 (2012). es_ES
dc.description.references Hyvärinen, A. & Oja, E. Independent component analysis: Algorithms and applications. Neural Networks 13, 411–430 (2000). es_ES
dc.description.references Welch, P. D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Aver. aging Over Short, Modified Periodograms. IEEE Trans. AUDIO Electroacoust. 15, 70–73 (1967). es_ES
dc.description.references Mormann, F., Lehnertz, K., David, P. & Elger, E. C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144, 358–369 (2000). es_ES
dc.description.references Jolliffe, I. T. Principal Component Analysis, Second Edition. Encycl. Stat. Behav. Sci. 30, 487 (2002). es_ES
dc.description.references Schöllkopf, B., Smola, A. J., Williamson, R. C. & Bartlett, P. L. New support vector algorithms. Neural Comput 12, 1207–1245 (2000). es_ES
dc.description.references Yan, K. & Zhang, D. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors Actuators, B Chem. 212, 353–363 (2015). es_ES
dc.description.references Chang, C.-C. & Lin, C.-J. Libsvm: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011). es_ES
dc.description.references Lewis, P. A., Critchley, H. D., Rotshtein, P. & Dolan, R. J. Neural correlates of processing valence and arousal in affective words. Cereb. Cortex 17, 742–748 (2007). es_ES
dc.description.references McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M. & Singer, T. Introducing the Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in three emotionally evocative virtual worlds. Comput. Human Behav. 59, 93–107 (2016). es_ES
dc.description.references Blake, J. & Gurocak, H. B. Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatronics 14, 606–615 (2009). es_ES
dc.description.references Heydarian, A. et al. Immersive virtual environments versus physical built environments: A benchmarking study for building design and user-built environment explorations. Autom. Constr. 54, 116–126 (2015). es_ES
dc.description.references Kuliga, S. F., Thrash, T., Dalton, R. C. & Hölscher, C. Virtual reality as an empirical research tool - Exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2015). es_ES
dc.description.references Yeom, D., Choi, J.-H. & Zhu, Y. Investigation of the Physiological Differences between Immersive Virtual Environment and Indoor Enviorment in a Building. Indoor adn Built Enviornment 0, Accept (2017). es_ES
dc.description.references Combrisson, E. & Jerbi, K. Exceeding chance level by chance: The caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015). es_ES
dc.description.references He, C., Yao, Y. & Ye, X. An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors. In Wearable Sensors and Robots: Proceedings of International Conference on Wearable Sensors and Robots 2015 (eds. Yang, C., Virk, G. S. & Yang, H.) 15–25, https://doi.org/10.1007/978-981-10-2404-7_2 (Springer Singapore, 2017). es_ES


This item appears in the following Collection(s)

Show simple item record