- -

Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pulido Velázquez, David es_ES
dc.contributor.author Renau-Pruñonosa, A. es_ES
dc.contributor.author Llopis Albert, Carlos es_ES
dc.contributor.author Morell, Ignacio es_ES
dc.contributor.author Collados-Lara, A.J. es_ES
dc.contributor.author Senent-Aparicio, J. es_ES
dc.contributor.author Leticia Baena-Ruiz es_ES
dc.date.accessioned 2019-07-06T20:02:13Z
dc.date.available 2019-07-06T20:02:13Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1027-5606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123259
dc.description.abstract [EN] Any change in the components of the water balance in a coastal aquifer, whether natural or anthropogenic, can alter the freshwater-salt water equilibrium. In this sense climate change (CC) and land use and land cover (LULC) change might significantly influence the availability of groundwater resources in the future. These coastal systems demand an integrated analysis of quantity and quality issues to obtain an appropriate assessment of hydrological impacts using density-dependent flow solutions. The aim of this work is to perform an integrated analysis of future potential global change (GC) scenarios and their hydrological impacts in a coastal aquifer, the Plana Oropesa-Torreblanca aquifer. It is a Mediterranean aquifer that extends over 75 km(2) in which important historical LULC changes have been produced and are planned for the future. Future CC scenarios will be defined by using an equi-feasible and non-feasible ensemble of projections based on the results of a multi-criteria analysis of the series generated from several regional climatic models with different downscaling approaches. The hydrological impacts of these CC scenarios combined with future LULC scenarios will be assessed with a chain of models defined by a sequential coupling of rainfall-recharge models, crop irrigation requirements and irrigation return models (for the aquifer and its neighbours that feed it), and a density-dependent aquifer approach. This chain of models, calibrated using the available historical data, allow testing of the conceptual approximation of the aquifer behaviour. They are also fed with series representatives of potential global change scenarios in order to perform a sensitivity analysis regarding future scenarios of rainfall recharge, lateral flows coming from the hydraulically connected neighbouring aquifer, agricultural recharge (taking into account expected future LULC changes) and sea level rise (SLR). The proposed analysis is valuable for improving our knowledge about the aquifer, and so comprises a tool to design sustainable adaptation management strategies taking into account the uncertainty in future GC conditions and their impacts. The results show that GC scenarios produce significant increases in the variability of flow budget components and in the salinity. es_ES
dc.description.sponsorship This research work has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds, the PMAFI/06/14 project with UCAM funds and the Plan de Garantia Juvenil from MINECO, co-financing by BEI and FSE. We would like to thank the Spain02 (AEMET and UC) and CORDEX projects and the Jucar Water Agency (CHJ) for the data provided for this study. We appreciate the valuable comments and suggestions provided by the editor and two anonymous referees. es_ES
dc.language Inglés es_ES
dc.publisher EUROPEAN GEOSCIENCES UNION es_ES
dc.relation.ispartof HYDROLOGY AND EARTH SYSTEM SCIENCES es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-22-3053-2018 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-2-R/ES/GENERACION SIMULACION E INTEGRACION DE ESCENARIOS HIDROLOGICOS FUTUROS EN EL ANALISIS DE IMPACTOS Y ESTRATEGIAS DE ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UCAM//PMAFI%2F06%2F14/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Pulido Velázquez, D.; Renau-Pruñonosa, A.; Llopis Albert, C.; Morell, I.; Collados-Lara, A.; Senent-Aparicio, J.; Leticia Baena-Ruiz (2018). Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer. HYDROLOGY AND EARTH SYSTEM SCIENCES. 22(5):3053-3074. https://doi.org/10.5194/hess-22-3053-2018 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.5194/hess-22-3053-2018 es_ES
dc.description.upvformatpinicio 3053 es_ES
dc.description.upvformatpfin 3074 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\367260 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universidad Católica San Antonio de Murcia
dc.description.references Alcalá, F. J. and Custodio, E.: Spatial average aquifer recharge through atmospheric ride mass balance and its uncertainty in continental Spain, Hydrol. Process, 28, 218–236, 2014. es_ES
dc.description.references Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration – Guidelines for computing crop water requirements, FAO Irrigation and drainage paper 56, FAO, Rome, http://www.fao.org/docrep/X0490E/x0490e00.htm (last access: May 2018), 1998. es_ES
dc.description.references Arora, V. K.: The use of the aridity index to assess climate change effect on annual runoff, J. Hydrol., 265, 164–177, 2002. es_ES
dc.description.references Arslan, H. and Demir, Y.: Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey, Environ. Monit. Assess., 185, 1027–1040, 2013. es_ES
dc.description.references Baena-Ruiz, L., Pulido-Velazquez, D., Collados-Lara, A. J., Renau-Pruñonosa, A., and Morell, I.: Global assessment of seawater intrusion problems (status and vulnerability), Water Resour. Manage., 32, 2681–2700, https://doi.org/10.1007/s11269-018-1952-2, 2018. es_ES
dc.description.references Benini, L., Antonellini, M., Laghi, M., and Mollema, P. N.: Assessment of Water Resources Availability and Groundwater Salinization in Future Climate and Land use Change Scenarios: A Case Study from a Coastal Drainage Basin in Italy, Water Resour. Manage., 30, 731–745, 2016. es_ES
dc.description.references Brunet, M., Casado, M. J., de Castro, M., Galán, P., López, J. A., Martín, J. M., Pastor, A., Petisco, E., Ramos, P., Ribalaygua, J., Rodríguez, E., Sanz, I., and Torres, L.: Generación de escenarios regionalizados de cambio climático para España, Ministerio de Medio Ambiente y Medio Rural y Marino; Agencia Estatal de Meteorología, Madrid, 158 pp., 2009. es_ES
dc.description.references Budyko, M. I.: Climate and Life, Academic Press, New York, 508 pp., 1974. es_ES
dc.description.references Chang, S., Clement, T. P., Simpson, M., and Lee, K.: Does sea-level rise have an impact on saltwater intrusion?, Adv. Water Resour., 34, 1283–1291, https://doi.org/10.1016/j.advwatres.2011.06.006, 2011. es_ES
dc.description.references CHJ – Júcar Water Agency: Júcar River Basin Plan, Demarcación hidrográfica del Júcar, Confederación Hidrográfica del Júcar, Ministry of Agriculture, Food and Environment, Madrid, Spain, 2015. es_ES
dc.description.references Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013. es_ES
dc.description.references Control networks of the Júcar River Basin Authority: https://www.chj.es/es-es/medioambiente/redescontrol/Paginas/RedesdeControl.aspx/, last access: 28 May 2018. es_ES
dc.description.references CORDEX PROJECT: The Coordinated Regional Climate Downscaling Experiment CORDEX, Program sponsored by World Climate Research Program (WCRP), available at: http://wcrp-cordex.ipsl.jussieu.fr/ (last access: 4 May 2017), 2013. es_ES
dc.description.references CORDEX Regional Data Portals: http://www.cordex.org/data-access/regional-data-portals/, last access: 28 May 2018. es_ES
dc.description.references Coutagne, A.: Quelques considérations sur le pouvoir évaporant de l'atmosphere, le déficit d'écoulement effectif et le déficit d'écoulement maximum, La Houille Blanche, 3, 360–374, https://doi.org/10.1051/lhb/1954036, 1954. es_ES
dc.description.references Custodio, E.: Coastal Aquifers of Europe: an overview, Hydrogeol. J., 18, 269–280, https://doi.org/10.1007/s10040-009-0496-1 2010. es_ES
dc.description.references Doulgeris, C. and Zissis, T.: 3D variable density flow simulation to evaluate dumping schemes in coastal aquifers, Water Resour. Manage., 28, 4943–4956, 2014. es_ES
dc.description.references Dragoni, W. and Sukhija, B.S.: Climate change and groundwater: a short review, Geol. Soc. Lond. Spec. Publ., 288, 1–12, 2008. es_ES
dc.description.references EEA – European Environment Agency: Global and European sea-level rise, http://www.eea.europa.eu/data-and-maps/indicators/sea-level-rise-2/assessment (last access: 4 May 2017), 2014. es_ES
dc.description.references Escriva-Bou, A., Pulido-Velazquez, M., and Pulido-Velazquez, D.: The Economic Value of Adaptive Strategies to Global Change for Water Management in Spain's Jucar Basin, J. Water Resour. Pl. Manage., 143, 04017005, https://doi.org/10.1061/(ASCE)WR.1943-5452.0000735, 2016. es_ES
dc.description.references España, S., Alcalá, F. J., Vallejos, A., and Pulido-Bosch, A.: A GIS tool for modelling annual diffuse infiltration on a plot scale, Comput. Geosci., 54, 318–325, 2013. es_ES
dc.description.references Feranec, J., Hazeu, G., Soukup, T., and Jaffrain, G.: Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data, Appl. Geogr., 30, 19–35, 2010. es_ES
dc.description.references Fujinawa, K.: Anthroscape of the Mediterranean Coastal Area in the Context of Hydrogeology: Projected Impacts of Climate Change, in: Sustainable Land Management, edited by: Kapur, S., Eswaran, H., and Blum, W., Springer, Berlin, Heidelberg, 311–332, https://doi.org/10.1007/978-3-642-14782-1_14, 2011. es_ES
dc.description.references Gerrits, A. M. J., Savenije, H. H. G., Veling, E. J. M., and Pfister, L.: Analytical derivation of the Budyko curve based on rainfall characteristics and a simple evaporation model, Water Resour. Res., 45, W04403, https://doi.org/10.1029/2008WR007308, 2009. es_ES
dc.description.references Gómez-Hernández, J. J., and Journel, A. G.: Joint simulation of MultiGaussian random variables, Geostatistics tróia∼92, edited by: Soares, A., in: Vol. 1, Kluwer, Dordrecht, the Netherlands, 85–94, 1993. es_ES
dc.description.references Gómez-Hernández, J. J. and Srivastava, R. M.: ISIM3D: An ANSI-C three dimensional multiple indicator conditional simulation program, Comput. Geosci., 16, 395–440, 1990. es_ES
dc.description.references Gorelick, S. M. and Zheng, C.: Global change and the groundwater management challenge, Water Resour. Res., 51, 3031–3051, https://doi.org/10.1002/2014WR016825, 2015. es_ES
dc.description.references Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., and Aureli, A.: Beneath the surface of global change: impacts of climate change on groundwater, J. Hydrol., 405, 532–560, https://doi.org/10.1016/j.jhydrol.2011.05.002, 2011. es_ES
dc.description.references Grundmann, J., Schutze, N., and Schmitz, G. H.: Towards an integrated arid zone water management using simulation-based optimisation, Environ. Earth Sci., 65, 1381–1394, https://doi.org/10.1007/s12665-011-1253-z, 2012. es_ES
dc.description.references Guo, F., Jiang, G., Polk, J. S., Huang, X. F., and Huang, S. Y.: Resilience of Groundwater Impacted by Land Use and Climate Change in a Karst Aquifer, South China, Water Environ. Res., 87, 1990–1998, 2015. es_ES
dc.description.references Guo, W. and Langevin, C. D.: User's guide to SEAWAT: a computer program for simulation of three-dimensional variable-density groundwater flow, Report No. US Geol. Surv. Open File 01-434, US Geological Survey, Tallahassee, Florida, 2002. es_ES
dc.description.references Haerter, J. O., Hagemann, S., Moseley, C., and Piani, C.: Climate model bias correction and the role of timescales, Hydrol. Earth Syst. Sci., 15, 1065–1079, https://doi.org/10.5194/hess-15-1065-2011, 2011. es_ES
dc.description.references Herrera, S., Fernández, J., and Gutiérrez, J. M.: Update of the Spain02 Gridded Observational Dataset for Euro-CORDEX evaluation: Assessing the Effect of the Interpolation Methodology, Int. J. Climatol., 36, 900–908, https://doi.org/10.1002/joc.4391, 2016. es_ES
dc.description.references Ketabchi, H., Mahmoodzadeh, D., Ataie-Ashtiani, B., and Simmons, C. T.: Sea-level rise impacts on seawater intrusion in coastal aquifers. Review and integration, J. Hydrol., 535, 235–255, 2016. es_ES
dc.description.references Kirn, L., Mudarra, M., Marín, A., Andreo, B., and Hartmann, A.: Improved Assessment of Groundwater Recharge in a Mediterranean Karst Region: Andalusia, Spain, in: Renard P. and Bertrand, C., in: EuroKarst 2016, Neuchâtel, Advances in Karst Science, Springer, Cham, 117–125, https://doi.org/10.1007/978-3-319-45465-8_13, 2017. es_ES
dc.description.references Llopis-Albert, C. and Capilla, J. E.: Stochastic inverse modelling of hydraulic conductivity fields taking into account independent stochastic structures: A 3D case study, J. Hydrol., 391, 277–288, https://doi.org/10.1016/j.jhydrol.2010.07.028, 2010. es_ES
dc.description.references Llopis-Albert, C. and Pulido-Velazquez, D.: Discussion about the validity of sharp-interface models to deal with seawater intrusion in coastal aquifers, Hydrol. Process., 28, 3642–3654, https://doi.org/10.1002/hyp.9908, 2014. es_ES
dc.description.references Llopis-Albert, C. and Pulido-Velazquez, D.: Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution, Hydrol. Process., 29, 2052–2064, https://doi.org/10.1002/hyp.10354, 2015. es_ES
dc.description.references Llopis-Albert, C., Merigó, J. M., and Xu, Y.: A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty, J. Hydrol., 540, 774–783, https://doi.org/10.1016/j.jhydrol.2016.06.065, 2016. es_ES
dc.description.references Mantoglou, A., Papantoniou, M., and Giannoulopoulos, P.: Management of coastal aquifers based on nonlinear optimization and evolutionary algorithms, J. Hydrol., 297, 209–228, https://doi.org/10.1016/j.jhydrol.2004.04.011, 2004. es_ES
dc.description.references Martínez-Valderrama, J., Ibáñez, J., Del Barrio, G., Sanjuán, M. E., Alcalá, F. J., Martínez-Vicente, S., Ruiz, A., and Puigdefábregas, J.: Present and future of desertification in Spain: implementation of a surveillance system to prevent land degradation, Sci. Total Environ., 563–564, 169–178, 2016. es_ES
dc.description.references Matott, L. S., Babendreier, J. E., and Purucker, S. T.: Evaluating uncertainty in integrated environmental models: a review of concepts and tools, Water Resour. Res., 45, W06421, https://doi.org/10.1029/2008WR007301, 2009. es_ES
dc.description.references McDonald, M. G. and Harbough, A. W.: A Modular Three-Dimensional Finite-Difference Groundwater Flow Model, US Geological Survey Technical Manual of Water Resources Investigation, Book 6, US Geological Survey, Reston, VA, p. 586, 1988. es_ES
dc.description.references Molina, J. L., Pulido-Velázquez, D., García-Aróstegui, J. L., and Pulido-Velázquez, M.: Dynamic Bayesian Networks as a Decision Support tool for assessing Climate Change impacts on highly stressed groundwater systems, J. Hydrol., 479, 113–129, https://doi.org/10.1016/j.jhydrol.2012.11.038, 2013. es_ES
dc.description.references Morell, I. and Giménez, E.: Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain), Environ. Geol., 29, 118–131, 1997. es_ES
dc.description.references Naji, A., Cheng, A. D., and Quazar, D.: BEM solution of stochastic seawater intrusion problems, Eng. Anal. Bound. Elements, 23, 529–537, https://doi.org/10.1016/S0955-7997(99)00012-0, 1999. es_ES
dc.description.references PGOU Torreblanca: Plan General de Ordenación Urbana de Torreblanca, Ayuntamiento de Torreblanca, Torreblanca, 2009. es_ES
dc.description.references Pulido-Velazquez, D., Garrote, L., Andreu, J., Martin-Carrasco, F. J., and Iglesias, A.: A methodology to diagnose the effect of climate change and to identify adaptive strategies to reduce its impacts in conjunctive-use systems at basin scale, J. Hydrol., 405, 110–122, https://doi.org/10.1016/j.jhydrol.2011.05.014, 2011. es_ES
dc.description.references Pulido-Velazquez, D., García-Aróstegui, J. L., Molina, J. L., and Pulido-Velázquez, M.: Assessment of future groundwater recharge in semi-arid regions under climate change scenarios (Serral-Salinas aquifer, SE Spain). Could increased rainfall variability increase the recharge rate?, Hydrol. Process., 29, 828–844, https://doi.org/10.1002/hyp.10191, 2014. es_ES
dc.description.references Pulido-Velazquez, D., Collados-Lara, A.-J., and Alcalá, F. J.: Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain, J. Hydrol., https://doi.org/10.1016/j.jhydrol.2017.10.077, in press, 2017. es_ES
dc.description.references Pulido-Velazquez, M., Peña-Haro, S., García-Prats, A., Mocholi-Almudever, A. F., Henriquez-Dole, L., Macian-Sorribes, H., and Lopez-Nicolas, A.: Integrated assessment of the impact of climate and land use changes on groundwater quantity and quality in the Mancha Oriental system (Spain), Hydrol. Earth Syst. Sci., 19, 1677–1693, https://doi.org/10.5194/hess-19-1677-2015, 2015. es_ES
dc.description.references Räisänen, J. and Räty, O.: Projections of daily mean temperature variability in the future: cross-validation tests with ENSEMBLES regional climate simulations, Clim. Dynam., 41, 1553–1568, https://doi.org/10.1007/s00382-012-1515-9, 2013. es_ES
dc.description.references Rasmussen, P., Sonnenborg, T. O., Goncear, G., and Hinsby, K.: Assessing impacts of climate change, SLR, and drainage canals on saltwater intrusion to coastal aquifer, Hydrol. Earth Syst. Sci., 17, 421–443, https://doi.org/10.5194/hess-17-421-2013, 2013. es_ES
dc.description.references Renau-Pruñonosa, A., Morell, I., and Pulido-Velazquez, D.: A methodology to analyse and assess pumping management strategies in coastal aquifers to avoid degradation due to seawater intrusion problems, Water Resour. Manage., 30, 4823–4837, https://doi.org/10.1007/s11269-016-1455-y, 2016. es_ES
dc.description.references Robins, N. S., Jones, H. K., and Ellis, J.: An aquifer management case study – The Chalk of the English South Downs, Water Resour. Manage., 13, 205–218, 1999. es_ES
dc.description.references Rosenthal, E., Vinokurov, A., Ronen D., Magaritz M., and Moshkovitz, S.: Anthropogenically induced salinization of groundwater: A case study from the Coastal Plain aquifer of Israel, J. Contam. Hydrol., 11, 149–171, 1992. es_ES
dc.description.references Roth, G. D.: Meteorología, Formaciones nubosas y otros fenómenos meteorológicos, Situaciones meteorológicas generales, Pronósticos del tiempo Barcelona, Ediciones Omega, Barcelona, Spain, p. 301, 2003. es_ES
dc.description.references Shammas, M. I. and Thunvik, R.: Predictive simulation of flow and solute transport for managing the Salalah coastal aquifer, Oman, Water Resour. Manage., 23, 2941, 2009. es_ES
dc.description.references Sola, F., Vallejos, A., Moreno, L., López-Geta, J. A., and Pulido-Bosch, A.: Identification of hydrogeochemical process linked to marine intrusion induced by pumping of a semi-confined Mediterranean coastal aquifer, Int. J. Environ. Sci. Technol., 10, 63–76, 2013. es_ES
dc.description.references Spain02: A set of gridded precipitation and temperature datasets: http://www.meteo.unican.es/datasets/spain02/, last access: 28 May 2018. es_ES
dc.description.references Sreekanth, J. and Datta, B.: Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models, J. Hydrol., 39, 245–256, 2010. es_ES
dc.description.references Tuñon, J.: Determinación experimental del balance hídrico del suelo y evaluación de la contaminación asociada a las prácticas agrícolas, PhD Thesis, Universitat Jaume I de Castellón, Castellón, Spain, 2000. es_ES
dc.description.references Turc, L.: Water balance of soils: relationship between precipitation, evapotranspiration and runoff, Ann. Agron., 5, 49–595 and 6, 5–131, 1954. es_ES
dc.description.references Turc, L.: Estimation of irrigation water requirements, potential evapotranspiration: A simple climatic formula evolved up to date, Ann. Agron. 12, 13—49, 1961. es_ES
dc.description.references Unsal, B., Yagbasan, O., and Yazicigil, H.: Assessing the impacts of climate change on sustainable management of coastal aquifers, Environ. Earth Sci., 72, 2183–2193, 2014. es_ES
dc.description.references Vallejos, A., Sola, F., and Pulido-Bosch, A.: Processes Influencing Groundwater Level and the Freshwater-Saltwater Interface in a Coastal Aquifer, Water Resour. Manage., 29, 679–697, https://doi.org/10.1007/s11269-014-0621-3, 2015. es_ES
dc.description.references Watanabe, S., Kanae, S., Seto, S., Yeh, P. J.-F., Hirabayashi, Y., and Oki, T.: Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models, J. Geophys. Res., 117, D23114, https://doi.org/10.1029/2012JD018192, 2012. es_ES
dc.description.references Werner, A. D. and Simmons, C. T.: Impact of sea-level rise on sea water intrusion in coastal aquifers, Ground Water, 47, 197–204, 2009. es_ES
dc.description.references Yechieli, Y. and Sivan, O.: The distribution of saline groundwater and its relation to the hydraulic conditions of aquifers and aquitards: example from Israel, Hydrogeol. J., 19, 71–87, 2011. es_ES
dc.description.references Yechieli, Y., Shalev, E., Wollman, S., Kiro, Y., and Kafri, U.: Response of the Mediterranean and Dead Sea coastal aquifers to sea level variations, Water Resour. Res., 46, W12550, https://doi.org/10.1029/2009WR008708, 2010. es_ES
dc.description.references Zheng, C. and Wang, P.: MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems, Documentation and User's Guide, Alabama University, Tuscaloosa, Alabama, 1999. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem