- -

PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms

Show full item record

Belda-Palazón, B.; Gonzalez-Garcia, M.; Lozano Juste, J.; Coego Gonzalez, A.; Antoni-Alandes, R.; Julian-Valenzuela, J.; Peirats-Llobet, M.... (2018). PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms. Proceedings of the National Academy of Sciences of the United States of America (Online). 115(50):E11857-E11863. https://doi.org/10.1073/pnas.1815410115

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/123530

Files in this item

Item Metadata

Title: PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms
Author: Belda-Palazón, Borja Gonzalez-Garcia, Mary-Paz LOZANO JUSTE, JORGE Coego Gonzalez, Alberto Antoni-Alandes, Regina Julian-Valenzuela, Jose Peirats-Llobet, Marta Rodríguez Solovey, Leisa Natacha Berbel Tornero, Ana Dietrich, Daniela FERNÁNDEZ LÓPEZ, MARIA ANGELES MADUEÑO ALBI, FRANCISCO Bennett, Malcolm J. Rodríguez Egea, Pedro Luís
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] The phytohormone abscisic acid (ABA) plays a key role regulating root growth, root system architecture, and root adaptive responses, such as hydrotropism. The molecular and cellular mechanisms that regulate the action ...[+]
Subjects: ABA , ABA biosensor , PYL8 , Non-cell-autonomous , Root
Copyrigths: Reconocimiento - No comercial (by-nc)
Source:
Proceedings of the National Academy of Sciences of the United States of America (Online). (eissn: 1091-6490 )
DOI: 10.1073/pnas.1815410115
Publisher:
Proceedings of the National Academy of Sciences
Publisher version: https://doi.org/10.1073/pnas.1815410115
Project ID:
info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/
...[+]
info:eu-repo/grantAgreement/EC/H2020/707477/EU/Drought discovery to improve drought tolerance in crops/
info:eu-repo/grantAgreement/MINECO//BIO2014-52537-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA MEDIANTE MECHANISMOS QUE AFECTAN LOCALIZACION SUBCELULAR, VIDA MEDIA Y ACTIVIDAD DE RECEPTORES PARA REFORZAR TOLERANCIA VEGETAL A SEQUIA/
info:eu-repo/grantAgreement/UKRI//BB%2FM002136%2F1/GB/Hydro-patterning: a novel mechanism controlling root branchingHydro-patterning: a novel mechanism controlling root branching/
info:eu-repo/grantAgreement/MINECO//BIO2015-64307-R/ES/CONTROL GENETICO DE LA ARQUITECTURA DE LA INFLORESCENCIA DE LEGUMINOSAS: NUEVOS GENES PARA LA MEJORA DE SU RENDIMIENTO/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2017%2F039/
info:eu-repo/grantAgreement/Leverhulme Trust//RPG-2016-409/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2017-82503-R/ES/REGULACION DE LA SEÑALIZACION DEL ABA Y TOLERANCIA A SEQUIA MEDIANTE E3 UBIQUITIN LIGASAS QUE REGULAN EL RECAMBIO DE RECEPTORES Y FOSFATASAS 2C/
[-]
Thanks:
Work in the P.L.R. and F.M. laboratories was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas Grants BIO2014-52537-R and ...[+]
Type: Artículo

References

Ubeda-Tomás, S., Beemster, G. T. S., & Bennett, M. J. (2012). Hormonal regulation of root growth: integrating local activities into global behaviour. Trends in Plant Science, 17(6), 326-331. doi:10.1016/j.tplants.2012.02.002

Bao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q., … Dinneny, J. R. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences, 111(25), 9319-9324. doi:10.1073/pnas.1400966111

Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., … Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 3(6). doi:10.1038/nplants.2017.57 [+]
Ubeda-Tomás, S., Beemster, G. T. S., & Bennett, M. J. (2012). Hormonal regulation of root growth: integrating local activities into global behaviour. Trends in Plant Science, 17(6), 326-331. doi:10.1016/j.tplants.2012.02.002

Bao, Y., Aggarwal, P., Robbins, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q., … Dinneny, J. R. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences, 111(25), 9319-9324. doi:10.1073/pnas.1400966111

Dietrich, D., Pang, L., Kobayashi, A., Fozard, J. A., Boudolf, V., Bhosale, R., … Bennett, M. J. (2017). Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants, 3(6). doi:10.1038/nplants.2017.57

Harris, J. (2015). Abscisic Acid: Hidden Architect of Root System Structure. Plants, 4(3), 548-572. doi:10.3390/plants4030548

Spollen, W. G., LeNoble, M. E., Samuels, T. D., Bernstein, N., & Sharp, R. E. (2000). Abscisic Acid Accumulation Maintains Maize Primary Root Elongation at Low Water Potentials by Restricting Ethylene Production. Plant Physiology, 122(3), 967-976. doi:10.1104/pp.122.3.967

Sharp, R. E. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany, 55(407), 2343-2351. doi:10.1093/jxb/erh276

Deak, K. I., & Malamy, J. (2005). Osmotic regulation of root system architecture. The Plant Journal, 43(1), 17-28. doi:10.1111/j.1365-313x.2005.02425.x

Gonzalez-Guzman, M., Pizzio, G. A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G. W., … Rodriguez, P. L. (2012). Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid. The Plant Cell, 24(6), 2483-2496. doi:10.1105/tpc.112.098574

Duan, L., Dietrich, D., Ng, C. H., Chan, P. M. Y., Bhalerao, R., Bennett, M. J., & Dinneny, J. R. (2013). Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings. The Plant Cell, 25(1), 324-341. doi:10.1105/tpc.112.107227

Feng, W., Lindner, H., Robbins, N. E., & Dinneny, J. R. (2016). Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses. The Plant Cell, 28(8), 1769-1782. doi:10.1105/tpc.16.00182

Geng, Y., Wu, R., Wee, C. W., Xie, F., Wei, X., Chan, P. M. Y., … Dinneny, J. R. (2013). A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis. The Plant Cell, 25(6), 2132-2154. doi:10.1105/tpc.113.112896

Takahashi, N., Goto, N., Okada, K., & Takahashi, H. (2002). Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta, 216(2), 203-211. doi:10.1007/s00425-002-0840-3

Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G. A., Fernandez, M. A., … Rodriguez, P. L. (2012). PYRABACTIN RESISTANCE1-LIKE8 Plays an Important Role for the Regulation of Abscisic Acid Signaling in Root. Plant Physiology, 161(2), 931-941. doi:10.1104/pp.112.208678

Barberon, M., Vermeer, J. E. M., De Bellis, D., Wang, P., Naseer, S., Andersen, T. G., … Geldner, N. (2016). Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell, 164(3), 447-459. doi:10.1016/j.cell.2015.12.021

Ondzighi-Assoume, C. A., Chakraborty, S., & Harris, J. M. (2016). Environmental Nitrate Stimulates Abscisic Acid Accumulation in Arabidopsis Root Tips by Releasing It from Inactive Stores. The Plant Cell, 28(3), 729-745. doi:10.1105/tpc.15.00946

Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., … Rubio, V. (2014). Targeted Degradation of Abscisic Acid Receptors Is Mediated by the Ubiquitin Ligase Substrate Adaptor DDA1 in Arabidopsis. The Plant Cell, 26(2), 712-728. doi:10.1105/tpc.113.122234

Bueso, E., Rodriguez, L., Lorenzo-Orts, L., Gonzalez-Guzman, M., Sayas, E., Muñoz-Bertomeu, J., … Rodriguez, P. L. (2014). The single-subunit RING-type E3 ubiquitin ligase RSL1 targets PYL4 and PYR1 ABA receptors in plasma membrane to modulate abscisic acid signaling. The Plant Journal, 80(6), 1057-1071. doi:10.1111/tpj.12708

Knoblich, J. A. (2005). Pins for spines. Nature Cell Biology, 7(12), 1057-1058. doi:10.1038/ncb1205-1057

Zhang, H., Han, W., De Smet, I., Talboys, P., Loya, R., Hassan, A., … Wang, M.-H. (2010). ABA promotes quiescence of the quiescent centre and suppresses stem cell differentiation in the Arabidopsis primary root meristem. The Plant Journal, 64(5), 764-774. doi:10.1111/j.1365-313x.2010.04367.x

Belda-Palazon, B., Rodriguez, L., Fernandez, M. A., Castillo, M.-C., Anderson, E. M., Gao, C., … Rodriguez, P. L. (2016). FYVE1/FREE1 Interacts with the PYL4 ABA Receptor and Mediates Its Delivery to the Vacuolar Degradation Pathway. The Plant Cell, 28(9), 2291-2311. doi:10.1105/tpc.16.00178

Yu, F., Lou, L., Tian, M., Li, Q., Ding, Y., Cao, X., … Xie, Q. (2016). ESCRT-I Component VPS23A Affects ABA Signaling by Recognizing ABA Receptors for Endosomal Degradation. Molecular Plant, 9(12), 1570-1582. doi:10.1016/j.molp.2016.11.002

Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., … Rodriguez, P. L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. The Plant Journal, 60(4), 575-588. doi:10.1111/j.1365-313x.2009.03981.x

Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., … Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. The Plant Journal, 61(1), 25-35. doi:10.1111/j.1365-313x.2009.04025.x

Okamoto, M., Peterson, F. C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., … Cutler, S. R. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences, 110(29), 12132-12137. doi:10.1073/pnas.1305919110

Cao, M., Liu, X., Zhang, Y., Xue, X., Zhou, X. E., Melcher, K., … Xu, Y. (2013). An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants. Cell Research, 23(8), 1043-1054. doi:10.1038/cr.2013.95

Castillo, M.-C., Lozano-Juste, J., González-Guzmán, M., Rodriguez, L., Rodriguez, P. L., & León, J. (2015). Inactivation of PYR/PYL/RCAR ABA receptors by tyrosine nitration may enable rapid inhibition of ABA signaling by nitric oxide in plants. Science Signaling, 8(392), ra89-ra89. doi:10.1126/scisignal.aaa7981

Wu, S., & Gallagher, K. L. (2014). The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on the endomembrane system. The Plant Journal, 80(3), 396-409. doi:10.1111/tpj.12640

Nakajima, K., Sena, G., Nawy, T., & Benfey, P. N. (2001). Intercellular movement of the putative transcription factor SHR in root patterning. Nature, 413(6853), 307-311. doi:10.1038/35095061

Gallagher, K. L., Paquette, A. J., Nakajima, K., & Benfey, P. N. (2004). Mechanisms Regulating SHORT-ROOT Intercellular Movement. Current Biology, 14(20), 1847-1851. doi:10.1016/j.cub.2004.09.081

Pálfy, M., Reményi, A., & Korcsmáros, T. (2012). Endosomal crosstalk: meeting points for signaling pathways. Trends in Cell Biology, 22(9), 447-456. doi:10.1016/j.tcb.2012.06.004

Christmann, A., Hoffmann, T., Teplova, I., Grill, E., & Müller, A. (2004). Generation of Active Pools of Abscisic Acid Revealed by In Vivo Imaging of Water-Stressed Arabidopsis. Plant Physiology, 137(1), 209-219. doi:10.1104/pp.104.053082

Kim, T.-H., Hauser, F., Ha, T., Xue, S., Böhmer, M., Nishimura, N., … Schroeder, J. I. (2011). Chemical Genetics Reveals Negative Regulation of Abscisic Acid Signaling by a Plant Immune Response Pathway. Current Biology, 21(11), 990-997. doi:10.1016/j.cub.2011.04.045

Waadt, R., Hitomi, K., Nishimura, N., Hitomi, C., Adams, S. R., Getzoff, E. D., & Schroeder, J. I. (2014). FRET-based reporters for the direct visualization of abscisic acid concentration changes and distribution in Arabidopsis. eLife, 3. doi:10.7554/elife.01739

Jones, A. M., Danielson, J. Å., ManojKumar, S. N., Lanquar, V., Grossmann, G., & Frommer, W. B. (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors. eLife, 3. doi:10.7554/elife.01741

Zhao, Y., Xing, L., Wang, X., Hou, Y.-J., Gao, J., Wang, P., … Zhu, J.-K. (2014). The ABA Receptor PYL8 Promotes Lateral Root Growth by Enhancing MYB77-Dependent Transcription of Auxin-Responsive Genes. Science Signaling, 7(328), ra53-ra53. doi:10.1126/scisignal.2005051

Peirats-Llobet, M., Han, S.-K., Gonzalez-Guzman, M., Jeong, C. W., Rodriguez, L., Belda-Palazon, B., … Rodriguez, P. L. (2016). A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components. Molecular Plant, 9(1), 136-147. doi:10.1016/j.molp.2015.10.003

Moes, D., Himmelbach, A., Korte, A., Haberer, G., & Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. The Plant Journal, 54(5), 806-819. doi:10.1111/j.1365-313x.2008.03454.x

Lynch, T., Erickson, B. J., & Finkelstein, R. R. (2012). Direct interactions of ABA-insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent protein kinases and ABA response element-binding bZIPs may contribute to turning off ABA response. Plant Molecular Biology, 80(6), 647-658. doi:10.1007/s11103-012-9973-3

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record