- -

Deep Teaching: Materials for Teaching Machine and Deep Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Teaching: Materials for Teaching Machine and Deep Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herta, Christian es_ES
dc.contributor.author Voigt, Benjamin es_ES
dc.contributor.author Baumann, Patrick es_ES
dc.contributor.author Strohmenger, Klaus es_ES
dc.contributor.author Jansen, Christoph es_ES
dc.contributor.author Fischer, Oliver es_ES
dc.contributor.author Zhang, Gefei es_ES
dc.contributor.author Hufnagel, Peter es_ES
dc.date.accessioned 2019-07-23T06:33:47Z
dc.date.available 2019-07-23T06:33:47Z
dc.date.issued 2019-07-05
dc.identifier.isbn 9788490486610
dc.identifier.issn 2603-5871
dc.identifier.uri http://hdl.handle.net/10251/124001
dc.description.abstract [EN] Machine learning (ML) is considered to be hard because it is relatively complicated in comparison to other topics of computer science. The reason is that machine learning is based heavily on mathematics and abstract concepts. This results in an entry barrier for students: Most students want to avoid such difficult topics in elective courses or self-study. In the project Deep.Teaching we address these issues: We motivate by selected applications and support courses as well as self-study by giving practical exercises for different topics in machine learning. The teaching material, provided as jupyter notebooks, consists of theoretical and programming sections. For didactical reasons, we designed programming exercises such that the students have to deeply understand the concepts and principles before they can start to implement a solution. We provide all necessary boilerplate code such that the students can primarily focus on the educational objectives of the exercises. We used different ways to give feedback for self-study: obscured solutions for mathematical results, software tests with assert statements, and graphical illustrations of sample solutions. All of the material is published under a permissive license. Developing jupyter notebooks collaboratively for educational purposes poses some problems. We address these issues and provide solutions/best practices. es_ES
dc.description.sponsorship The project Deep.Teaching is funded by the German National Ministry of Education and Research (BMBF), project number 01IS17056. es_ES
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof HEAD'19. 5th International Conference on Higher Education Advances es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Higher Education es_ES
dc.subject Learning es_ES
dc.subject Educational systems es_ES
dc.subject Teaching es_ES
dc.subject Machine learning es_ES
dc.subject Jupyter notebook es_ES
dc.subject Programming exercise es_ES
dc.subject Collaborative development es_ES
dc.title Deep Teaching: Materials for Teaching Machine and Deep Learning es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/HEAD19.2019.9177
dc.relation.projectID info:eu-repo/grantAgreement/BMBF//01IS17056/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Herta, C.; Voigt, B.; Baumann, P.; Strohmenger, K.; Jansen, C.; Fischer, O.; Zhang, G.... (2019). Deep Teaching: Materials for Teaching Machine and Deep Learning. En HEAD'19. 5th International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 1153-1131. https://doi.org/10.4995/HEAD19.2019.9177 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename Fifth International Conference on Higher Education Advances es_ES
dc.relation.conferencedate Junio 26-28, 2019 es_ES
dc.relation.conferenceplace València, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/HEAD/HEAD19/paper/view/9177 es_ES
dc.description.upvformatpinicio 1153 es_ES
dc.description.upvformatpfin 1131 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\9177 es_ES
dc.contributor.funder Bundesministerium für Bildung und Forschung, Alemania es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem