Mostrar el registro sencillo del ítem
dc.contributor.author | Herta, Christian | es_ES |
dc.contributor.author | Voigt, Benjamin | es_ES |
dc.contributor.author | Baumann, Patrick | es_ES |
dc.contributor.author | Strohmenger, Klaus | es_ES |
dc.contributor.author | Jansen, Christoph | es_ES |
dc.contributor.author | Fischer, Oliver | es_ES |
dc.contributor.author | Zhang, Gefei | es_ES |
dc.contributor.author | Hufnagel, Peter | es_ES |
dc.date.accessioned | 2019-07-23T06:33:47Z | |
dc.date.available | 2019-07-23T06:33:47Z | |
dc.date.issued | 2019-07-05 | |
dc.identifier.isbn | 9788490486610 | |
dc.identifier.issn | 2603-5871 | |
dc.identifier.uri | http://hdl.handle.net/10251/124001 | |
dc.description.abstract | [EN] Machine learning (ML) is considered to be hard because it is relatively complicated in comparison to other topics of computer science. The reason is that machine learning is based heavily on mathematics and abstract concepts. This results in an entry barrier for students: Most students want to avoid such difficult topics in elective courses or self-study. In the project Deep.Teaching we address these issues: We motivate by selected applications and support courses as well as self-study by giving practical exercises for different topics in machine learning. The teaching material, provided as jupyter notebooks, consists of theoretical and programming sections. For didactical reasons, we designed programming exercises such that the students have to deeply understand the concepts and principles before they can start to implement a solution. We provide all necessary boilerplate code such that the students can primarily focus on the educational objectives of the exercises. We used different ways to give feedback for self-study: obscured solutions for mathematical results, software tests with assert statements, and graphical illustrations of sample solutions. All of the material is published under a permissive license. Developing jupyter notebooks collaboratively for educational purposes poses some problems. We address these issues and provide solutions/best practices. | es_ES |
dc.description.sponsorship | The project Deep.Teaching is funded by the German National Ministry of Education and Research (BMBF), project number 01IS17056. | es_ES |
dc.format.extent | 9 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.relation.ispartof | HEAD'19. 5th International Conference on Higher Education Advances | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Higher Education | es_ES |
dc.subject | Learning | es_ES |
dc.subject | Educational systems | es_ES |
dc.subject | Teaching | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Jupyter notebook | es_ES |
dc.subject | Programming exercise | es_ES |
dc.subject | Collaborative development | es_ES |
dc.title | Deep Teaching: Materials for Teaching Machine and Deep Learning | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/HEAD19.2019.9177 | |
dc.relation.projectID | info:eu-repo/grantAgreement/BMBF//01IS17056/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Herta, C.; Voigt, B.; Baumann, P.; Strohmenger, K.; Jansen, C.; Fischer, O.; Zhang, G.... (2019). Deep Teaching: Materials for Teaching Machine and Deep Learning. En HEAD'19. 5th International Conference on Higher Education Advances. Editorial Universitat Politècnica de València. 1153-1131. https://doi.org/10.4995/HEAD19.2019.9177 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | Fifth International Conference on Higher Education Advances | es_ES |
dc.relation.conferencedate | Junio 26-28, 2019 | es_ES |
dc.relation.conferenceplace | València, Spain | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/HEAD/HEAD19/paper/view/9177 | es_ES |
dc.description.upvformatpinicio | 1153 | es_ES |
dc.description.upvformatpfin | 1131 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\9177 | es_ES |
dc.contributor.funder | Bundesministerium für Bildung und Forschung, Alemania | es_ES |