- -

Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images

Mostrar el registro completo del ítem

Pereira, J.; Colomer, A.; Naranjo Ornedo, V. (2018). Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 174-183. https://doi.org/10.1007/978-3-030-03493-1_19

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124074

Ficheros en el ítem

Metadatos del ítem

Título: Comparison of Local Analysis Strategies for Exudate Detection in Fundus Images
Autor: Pereira, Joana Colomer, Adrián Naranjo Ornedo, Valeriana
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
Diabetic Retinopathy (DR) is a severe and widely spread eye disease. Exudates are one of the most prevalent signs during the early stage of DR and an early detection of these lesions is vital to prevent the patient’s ...[+]
Palabras clave: Exudates , Superpixels , LBP , Granulometries , SVM
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-03492-4
Fuente:
Intelligent Data Engineering and Automated Learning – IDEAL 2018.
DOI: 10.1007/978-3-030-03493-1_19
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/978-3-030-03493-1_19
Título del congreso: International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
Lugar del congreso: Madrid, Spain
Fecha congreso: Noviembre 21-23,2018
Serie: Lecture Notes in Computer Science;11314
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/
info:eu-repo/grantAgreement/MINECO//BES-2014-067889/ES/BES-2014-067889/
Agradecimientos:
This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT2016-2017, 732613]. The work of Adri´an Colomer has been supported by the Spanish Government ...[+]
Tipo: Capítulo de libro Comunicación en congreso

References

Sidibé, D., Sadek, I., Mériaudeau, F.: Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput. Biol. Med. 62, 175–184 (2015)

Zhou, W., Wu, C., Yi, Y., Du, W.: Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5, 17077–17088 (2017)

Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002) [+]
Sidibé, D., Sadek, I., Mériaudeau, F.: Discrimination of retinal images containing bright lesions using sparse coded features and SVM. Comput. Biol. Med. 62, 175–184 (2015)

Zhou, W., Wu, C., Yi, Y., Du, W.: Automatic detection of exudates in digital color fundus images using superpixel multi-feature classification. IEEE Access 5, 17077–17088 (2017)

Sinthanayothin, C., et al.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)

Walter, T., Klein, J.C., et al.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)

Ali, S., et al.: Statistical atlas based exudate segmentation. Comput. Med. Imaging Graph. 37(5–6), 358–368 (2013)

Zhang, X., Thibault, G., Decencière, E., Marcotegui, B., et al.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)

Li, H., Chutatape, O.: Automated feature extraction in color retinal images by a model based approach. IEEE Trans. Biomed. Eng. 51(2), 246–254 (2004)

Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)

Giancardo, L., et al.: Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med. Image Anal. 16(1), 216–226 (2012)

Amel, F., Mohammed, M., Abdelhafid, B.: Improvement of the hard exudates detection method used for computer-aided diagnosis of diabetic retinopathy. Int. J. Image Graph. Signal Process. 4(4), 19 (2012)

Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)

Akram, M.U., Tariq, A., Khan, S.A., Javed, M.Y.: Automated detection of exudates and macula for grading of diabetic macular edema. Comput. Methods Programs Biomed. 114(2), 141–152 (2014)

Machairas, V.: Waterpixels and their application to image segmentation learning. Ph.D. thesis, Université de recherche Paris Sciences et Lettres (2016)

Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_16

Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

Levinshtein, A., Stere, A., Kutulakos, K.N., Fleet, D.J., Dickinson, S.J., Siddiqi, K.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)

Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit. 43(3), 706–719 (2010)

Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)

Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

Decencière, E., Cazuguel, G., Zhang, X., Thibault, G., Klein, J.C., Meyer, F., et al.: TeleOphta: machine learning and image processing methods for teleophthalmology. IRBM 34(2), 196–203 (2013)

DErrico, J.: inpaint\_nans, matlab central file exchange (2004). http://kr.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans . Accessed 13 Aug 2012

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem