Mostrar el registro sencillo del ítem
dc.contributor.author | Silva, Cristiana | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.date.accessioned | 2019-07-24T09:39:16Z | |
dc.date.available | 2019-07-24T09:39:16Z | |
dc.date.issued | 2018-11-09 | |
dc.identifier.isbn | 978-3-030-03492-4 | |
dc.identifier.uri | http://hdl.handle.net/10251/124075 | |
dc.description.abstract | Regular screening for the development of diabetic retinopathy is imperative for an early diagnosis and a timely treatment, thus preventing further progression of the disease. The conventional screening techniques based on manual observation by qualified physicians can be very time consuming and prone to error. In this paper, a novel automated screening model based on deep learning for the semantic segmentation of exudates in color fundus images is proposed with the implementation of an end-to-end convolutional neural network built upon UNet architecture. This encoder-decoder network is characterized by the combination of a contracting path and a symmetrical expansive path to obtain precise localization with the use of context information. The proposed method was validated on E-OPHTHA and DIARETDB1 public databases achieving promising results compared to current state-of-theart methods. | es_ES |
dc.description.sponsorship | This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT2016-2017, 732613]. The work of Adri´an Colomer has been supported by the Spanish Government under a FPI Grant [BES-2014-067889]. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research. | es_ES |
dc.format.extent | 10 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Intelligent Data Engineering and Automated Learning – IDEAL 2018 | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;11314 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Semantic segmentation | es_ES |
dc.subject | Deep learning | es_ES |
dc.subject | Fundus images | es_ES |
dc.subject | Exudates | es_ES |
dc.subject | U-Net | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-030-03493-1_18 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-067889/ES/BES-2014-067889/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | Silva, C.; Colomer, A.; Naranjo Ornedo, V. (2018). Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 164-173. https://doi.org/10.1007/978-3-030-03493-1_18 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conference on Intelligent Data Engineering and Automated Learning (IDEAL) | es_ES |
dc.relation.conferencedate | Noviembre 21-23,2018 | es_ES |
dc.relation.conferenceplace | Madrid, Spain | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-3-030-03493-1_18 | es_ES |
dc.description.upvformatpinicio | 164 | es_ES |
dc.description.upvformatpfin | 173 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\372960 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | World Health Organization: Diabetes fact sheet. Sci. Total Environ. 20, 1–88 (2011) | es_ES |
dc.description.references | Verma, L., Prakash, G., Tewari, H.K.: Diabetic retinopathy: time for action. No complacency please! Bull. World Health Organ. 80(5), 419–419 (2002) | es_ES |
dc.description.references | Sopharak, A.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010) | es_ES |
dc.description.references | Imani, E., Pourreza, H.R.: A novel method for retinal exudate segmentation using signal separation algorithm. Comput. Methods Programs Biomed. 133, 195–205 (2016) | es_ES |
dc.description.references | Haloi, M., Dandapat, S., Sinha, R.: A Gaussian scale space approach for exudates detection, classification and severity prediction. arXiv preprint arXiv:1505.00737 (2015) | es_ES |
dc.description.references | Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010) | es_ES |
dc.description.references | Harangi, B., Hajdu, A.: Automatic exudate detection by fusing multiple active contours and regionwise classification. Comput. Biol. Med. 54, 156–171 (2014) | es_ES |
dc.description.references | Sopharak, A., Uyyanonvara, B., Barman, S.: Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering. Sensors 9(3), 2148–2161 (2009) | es_ES |
dc.description.references | Havaei, M., Davy, A., Warde-Farley, D.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017) | es_ES |
dc.description.references | Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35(11), 2369–2380 (2016) | es_ES |
dc.description.references | Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016) | es_ES |
dc.description.references | Gulshan, V., Peng, L., Coram, M.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016) | es_ES |
dc.description.references | Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016) | es_ES |
dc.description.references | Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28 | es_ES |
dc.description.references | Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation, pp. 1–23. arXiv preprint arXiv:1704.06857 (2017) | es_ES |
dc.description.references | Deng, Z., Fan, H., Xie, F., Cui, Y., Liu, J.: Segmentation of dermoscopy images based on fully convolutional neural network. In: IEEE International Conference on Image Processing (ICIP 2017), pp. 1732–1736. IEEE (2017) | es_ES |
dc.description.references | Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2014) | es_ES |
dc.description.references | Li, W., Qian, X., Ji, J.: Noise-tolerant deep learning for histopathological image segmentation, vol. 510 (2017) | es_ES |
dc.description.references | Chen, H., Qi, X., Yu, L.: DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017) | es_ES |
dc.description.references | Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002) | es_ES |
dc.description.references | Morales, S., Naranjo, V., Angulo, U., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013) | es_ES |
dc.description.references | Zhang, X., Thibault, G., Decencière, E.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014) | es_ES |