- -

Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage

Mostrar el registro completo del ítem

Silva, C.; Colomer, A.; Naranjo Ornedo, V. (2018). Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 164-173. https://doi.org/10.1007/978-3-030-03493-1_18

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124075

Ficheros en el ítem

Metadatos del ítem

Título: Deep Learning-based Approach for the Semantic Segmentation of Bright Retinal Damage
Autor: Silva, Cristiana Colomer, Adrián Naranjo Ornedo, Valeriana
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
Regular screening for the development of diabetic retinopathy is imperative for an early diagnosis and a timely treatment, thus preventing further progression of the disease. The conventional screening techniques based ...[+]
Palabras clave: Semantic segmentation , Deep learning , Fundus images , Exudates , U-Net
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-03492-4
Fuente:
Intelligent Data Engineering and Automated Learning – IDEAL 2018.
DOI: 10.1007/978-3-030-03493-1_18
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/978-3-030-03493-1_18
Título del congreso: International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
Lugar del congreso: Madrid, Spain
Fecha congreso: Noviembre 21-23,2018
Serie: Lecture Notes in Computer Science;11314
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2014-067889/ES/BES-2014-067889/
info:eu-repo/grantAgreement/EC/H2020/732613/EU/Glaucoma – Advanced, LAbel-free High resolution Automated OCT Diagnostics/
Agradecimientos:
This paper was supported by the European Union’s Horizon 2020 research and innovation programme under the Project GALAHAD [H2020-ICT2016-2017, 732613]. The work of Adri´an Colomer has been supported by the Spanish Government ...[+]
Tipo: Capítulo de libro Comunicación en congreso

References

World Health Organization: Diabetes fact sheet. Sci. Total Environ. 20, 1–88 (2011)

Verma, L., Prakash, G., Tewari, H.K.: Diabetic retinopathy: time for action. No complacency please! Bull. World Health Organ. 80(5), 419–419 (2002)

Sopharak, A.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010) [+]
World Health Organization: Diabetes fact sheet. Sci. Total Environ. 20, 1–88 (2011)

Verma, L., Prakash, G., Tewari, H.K.: Diabetic retinopathy: time for action. No complacency please! Bull. World Health Organ. 80(5), 419–419 (2002)

Sopharak, A.: Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J. Mod. Opt. 57(2), 124–135 (2010)

Imani, E., Pourreza, H.R.: A novel method for retinal exudate segmentation using signal separation algorithm. Comput. Methods Programs Biomed. 133, 195–205 (2016)

Haloi, M., Dandapat, S., Sinha, R.: A Gaussian scale space approach for exudates detection, classification and severity prediction. arXiv preprint arXiv:1505.00737 (2015)

Welfer, D., Scharcanski, J., Marinho, D.R.: A coarse-to-fine strategy for automatically detecting exudates in color eye fundus images. Comput. Med. Imaging Graph. 34(3), 228–235 (2010)

Harangi, B., Hajdu, A.: Automatic exudate detection by fusing multiple active contours and regionwise classification. Comput. Biol. Med. 54, 156–171 (2014)

Sopharak, A., Uyyanonvara, B., Barman, S.: Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy C-means clustering. Sensors 9(3), 2148–2161 (2009)

Havaei, M., Davy, A., Warde-Farley, D.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)

Liskowski, P., Krawiec, K.: Segmenting retinal blood vessels with deep neural networks. IEEE Trans. Med. Imag. 35(11), 2369–2380 (2016)

Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

Gulshan, V., Peng, L., Coram, M.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22), 2402–2410 (2016)

Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion. Comput. Methods Programs Biomed. 137, 281–292 (2016)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation, pp. 1–23. arXiv preprint arXiv:1704.06857 (2017)

Deng, Z., Fan, H., Xie, F., Cui, Y., Liu, J.: Segmentation of dermoscopy images based on fully convolutional neural network. In: IEEE International Conference on Image Processing (ICIP 2017), pp. 1732–1736. IEEE (2017)

Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440. IEEE (2014)

Li, W., Qian, X., Ji, J.: Noise-tolerant deep learning for histopathological image segmentation, vol. 510 (2017)

Chen, H., Qi, X., Yu, L.: DCAN: deep contour-aware networks for object instance segmentation from histology images. Med. Image Anal. 36, 135–146 (2017)

Walter, T., Klein, J.C., Massin, P., Erginay, A.: A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans. Med. Imaging 21(10), 1236–1243 (2002)

Morales, S., Naranjo, V., Angulo, U., Alcaniz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013)

Zhang, X., Thibault, G., Decencière, E.: Exudate detection in color retinal images for mass screening of diabetic retinopathy. Med. Image Anal. 18(7), 1026–1043 (2014)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem