- -

Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques

Mostrar el registro completo del ítem

García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V.; Peñaranda, F.; Sales, MÁ. (2018). Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 642-650. https://doi.org/10.1007/978-3-030-03493-1_67

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/124077

Ficheros en el ítem

Metadatos del ítem

Título: Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques
Autor: García-Pardo, José Gabriel Colomer, Adrián Naranjo Ornedo, Valeriana Peñaranda, Francisco Sales, María Ángeles
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
A new approach for the segmentation of gland units in histological images is proposed with the aim of contributing to the improvement of the prostate cancer diagnosis. Clustering methods on several colour spaces are applied ...[+]
Palabras clave: Machine learning , Multilayer perceptron , Support vector machine , Locally constrained watershed transform , Gland unit identification , Histological prostate image
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-03492-4
Fuente:
Intelligent Data Engineering and Automated Learning – IDEAL 2018.
DOI: 10.1007/978-3-030-03493-1_67
Editorial:
Springer
Versión del editor: http://dx.doi.org/10.1007/978-3-030-03493-1_67
Título del congreso: International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
Lugar del congreso: Madrid, Spain
Fecha congreso: Noviembre 21-23,2018
Serie: Lecture Notes in Computer Science;11314
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/
info:eu-repo/grantAgreement/MINECO//BES-2014-067889/ES/BES-2014-067889/
Agradecimientos:
This work has been funded by the Ministry of Economy, Industry and Competitiveness under the SICAP project (DPI2016-77869-C2-1-R). The work of Adri´an Colomer has been supported by the Spanish FPI Grant BES-2014-067889. We ...[+]
Tipo: Capítulo de libro Comunicación en congreso

References

Gleason, D.F.: Histologic grading and clinical staging of prostatic carcinoma. In: Urologic Pathology (1977)

Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: MIAAB Workshop, pp. 1–8 (2007)

Nguyen, K., Sabata, B., Jain, A.K.: Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33(7), 951–961 (2012) [+]
Gleason, D.F.: Histologic grading and clinical staging of prostatic carcinoma. In: Urologic Pathology (1977)

Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: MIAAB Workshop, pp. 1–8 (2007)

Nguyen, K., Sabata, B., Jain, A.K.: Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33(7), 951–961 (2012)

Kwak, J.T., Hewitt, S.M.: Multiview boosting digital pathology analysis of prostate cancer. Comput. Methods Programs Biomed. 142, 91–99 (2017)

Ren, J., Sadimin, E., Foran, D.J., Qi, X.: Computer aided analysis of prostate histopathology images to support a refined gleason grading system. In: SPIE Medical Imaging, International Society for Optics and Photonics, p. 101331V (2017)

Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2013)

Nguyen, K., Sarkar, A., Jain, A.K.: Structure and context in prostatic gland segmentation and classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 115–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_15

Beare, R.: A locally constrained watershed transform. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1063–1074 (2006)

Gertych, A., et al.: Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput. Med. Imaging Graph. 46, 197–208 (2015)

Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

Huang, P., Lee, C.: Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Med. Imaging 28(7), 1037–1050 (2009)

Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem