Mostrar el registro sencillo del ítem
dc.contributor.author | García-Pardo, José Gabriel | es_ES |
dc.contributor.author | Colomer, Adrián | es_ES |
dc.contributor.author | Naranjo Ornedo, Valeriana | es_ES |
dc.contributor.author | Peñaranda, Francisco | es_ES |
dc.contributor.author | Sales, María Ángeles | es_ES |
dc.date.accessioned | 2019-07-24T09:59:50Z | |
dc.date.available | 2019-07-24T09:59:50Z | |
dc.date.issued | 2018-11-09 | |
dc.identifier.isbn | 978-3-030-03492-4 | |
dc.identifier.uri | http://hdl.handle.net/10251/124077 | |
dc.description.abstract | A new approach for the segmentation of gland units in histological images is proposed with the aim of contributing to the improvement of the prostate cancer diagnosis. Clustering methods on several colour spaces are applied to each sample in order to generate a binary mask of the different tissue components. From the mask of lumen candidates, the Locally Constrained Watershed Transform (LCWT) is applied as a novel gland segmentation technique never before used in this type of images. 500 random gland candidates, both benign and pathological, are selected to evaluate the LCWT technique providing results of Dice coefficient of 0.85. Several shape and textural descriptors in combination with contextual features and a fractal analysis are applied, in a novel way, on different colour spaces achieving a total of 297 features to discern between artefacts and true glands. The most relevant features are then selected by an exhaustive statistical analysis in terms of independence between variables and dependence with the class. 3.200 artefacts, 3.195 benign glands and 3.000 pathological glands are obtained, from a data set of 1468 images at 10x magnification. A careful strategy of data partition is implemented to robustly address the classification problem between artefacts and glands. Both linear and non-linear approaches are considered using machine learning techniques based on Support Vector Machines (SVM) and feedforward neural networks achieving values of sensitivity, specificity and accuracy of 0.92, 0.97 and 0.95, respectively | es_ES |
dc.description.sponsorship | This work has been funded by the Ministry of Economy, Industry and Competitiveness under the SICAP project (DPI2016-77869-C2-1-R). The work of Adri´an Colomer has been supported by the Spanish FPI Grant BES-2014-067889. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research | es_ES |
dc.format.extent | 9 | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer | es_ES |
dc.relation.ispartof | Intelligent Data Engineering and Automated Learning – IDEAL 2018 | es_ES |
dc.relation.ispartofseries | Lecture Notes in Computer Science;11314 | |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Machine learning | es_ES |
dc.subject | Multilayer perceptron | es_ES |
dc.subject | Support vector machine | es_ES |
dc.subject | Locally constrained watershed transform | es_ES |
dc.subject | Gland unit identification | es_ES |
dc.subject | Histological prostate image | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.1007/978-3-030-03493-1_67 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2014-067889/ES/BES-2014-067889/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.description.bibliographicCitation | García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V.; Peñaranda, F.; Sales, MÁ. (2018). Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 642-650. https://doi.org/10.1007/978-3-030-03493-1_67 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | International Conference on Intelligent Data Engineering and Automated Learning (IDEAL) | es_ES |
dc.relation.conferencedate | Noviembre 21-23,2018 | es_ES |
dc.relation.conferenceplace | Madrid, Spain | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/978-3-030-03493-1_67 | es_ES |
dc.description.upvformatpinicio | 642 | es_ES |
dc.description.upvformatpfin | 650 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | S\372965 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Gleason, D.F.: Histologic grading and clinical staging of prostatic carcinoma. In: Urologic Pathology (1977) | es_ES |
dc.description.references | Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: MIAAB Workshop, pp. 1–8 (2007) | es_ES |
dc.description.references | Nguyen, K., Sabata, B., Jain, A.K.: Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33(7), 951–961 (2012) | es_ES |
dc.description.references | Kwak, J.T., Hewitt, S.M.: Multiview boosting digital pathology analysis of prostate cancer. Comput. Methods Programs Biomed. 142, 91–99 (2017) | es_ES |
dc.description.references | Ren, J., Sadimin, E., Foran, D.J., Qi, X.: Computer aided analysis of prostate histopathology images to support a refined gleason grading system. In: SPIE Medical Imaging, International Society for Optics and Photonics, p. 101331V (2017) | es_ES |
dc.description.references | Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2013) | es_ES |
dc.description.references | Nguyen, K., Sarkar, A., Jain, A.K.: Structure and context in prostatic gland segmentation and classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 115–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_15 | es_ES |
dc.description.references | Beare, R.: A locally constrained watershed transform. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1063–1074 (2006) | es_ES |
dc.description.references | Gertych, A., et al.: Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput. Med. Imaging Graph. 46, 197–208 (2015) | es_ES |
dc.description.references | Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002) | es_ES |
dc.description.references | Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010) | es_ES |
dc.description.references | Huang, P., Lee, C.: Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Med. Imaging 28(7), 1037–1050 (2009) | es_ES |
dc.description.references | Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001) | es_ES |