- -

Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García-Pardo, José Gabriel es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Peñaranda, Francisco es_ES
dc.contributor.author Sales, María Ángeles es_ES
dc.date.accessioned 2019-07-24T09:59:50Z
dc.date.available 2019-07-24T09:59:50Z
dc.date.issued 2018-11-09
dc.identifier.isbn 978-3-030-03492-4
dc.identifier.uri http://hdl.handle.net/10251/124077
dc.description.abstract A new approach for the segmentation of gland units in histological images is proposed with the aim of contributing to the improvement of the prostate cancer diagnosis. Clustering methods on several colour spaces are applied to each sample in order to generate a binary mask of the different tissue components. From the mask of lumen candidates, the Locally Constrained Watershed Transform (LCWT) is applied as a novel gland segmentation technique never before used in this type of images. 500 random gland candidates, both benign and pathological, are selected to evaluate the LCWT technique providing results of Dice coefficient of 0.85. Several shape and textural descriptors in combination with contextual features and a fractal analysis are applied, in a novel way, on different colour spaces achieving a total of 297 features to discern between artefacts and true glands. The most relevant features are then selected by an exhaustive statistical analysis in terms of independence between variables and dependence with the class. 3.200 artefacts, 3.195 benign glands and 3.000 pathological glands are obtained, from a data set of 1468 images at 10x magnification. A careful strategy of data partition is implemented to robustly address the classification problem between artefacts and glands. Both linear and non-linear approaches are considered using machine learning techniques based on Support Vector Machines (SVM) and feedforward neural networks achieving values of sensitivity, specificity and accuracy of 0.92, 0.97 and 0.95, respectively es_ES
dc.description.sponsorship This work has been funded by the Ministry of Economy, Industry and Competitiveness under the SICAP project (DPI2016-77869-C2-1-R). The work of Adri´an Colomer has been supported by the Spanish FPI Grant BES-2014-067889. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan Xp GPU used for this research es_ES
dc.format.extent 9 es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Intelligent Data Engineering and Automated Learning – IDEAL 2018 es_ES
dc.relation.ispartofseries Lecture Notes in Computer Science;11314
dc.rights Reserva de todos los derechos es_ES
dc.subject Machine learning es_ES
dc.subject Multilayer perceptron es_ES
dc.subject Support vector machine es_ES
dc.subject Locally constrained watershed transform es_ES
dc.subject Gland unit identification es_ES
dc.subject Histological prostate image es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-030-03493-1_67
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2014-067889/ES/BES-2014-067889/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation García-Pardo, JG.; Colomer, A.; Naranjo Ornedo, V.; Peñaranda, F.; Sales, MÁ. (2018). Identification of Individual Glandular Regions Using LCWT and Machine Learning Techniques. En Intelligent Data Engineering and Automated Learning – IDEAL 2018. Springer. 642-650. https://doi.org/10.1007/978-3-030-03493-1_67 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Intelligent Data Engineering and Automated Learning (IDEAL) es_ES
dc.relation.conferencedate Noviembre 21-23,2018 es_ES
dc.relation.conferenceplace Madrid, Spain es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/978-3-030-03493-1_67 es_ES
dc.description.upvformatpinicio 642 es_ES
dc.description.upvformatpfin 650 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\372965 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Gleason, D.F.: Histologic grading and clinical staging of prostatic carcinoma. In: Urologic Pathology (1977) es_ES
dc.description.references Naik, S., Doyle, S., Feldman, M., Tomaszewski, J., Madabhushi, A.: Gland segmentation and computerized gleason grading of prostate histology by integrating low-, high-level and domain specific information. In: MIAAB Workshop, pp. 1–8 (2007) es_ES
dc.description.references Nguyen, K., Sabata, B., Jain, A.K.: Prostate cancer grading: gland segmentation and structural features. Pattern Recogn. Lett. 33(7), 951–961 (2012) es_ES
dc.description.references Kwak, J.T., Hewitt, S.M.: Multiview boosting digital pathology analysis of prostate cancer. Comput. Methods Programs Biomed. 142, 91–99 (2017) es_ES
dc.description.references Ren, J., Sadimin, E., Foran, D.J., Qi, X.: Computer aided analysis of prostate histopathology images to support a refined gleason grading system. In: SPIE Medical Imaging, International Society for Optics and Photonics, p. 101331V (2017) es_ES
dc.description.references Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Berlin (2013) es_ES
dc.description.references Nguyen, K., Sarkar, A., Jain, A.K.: Structure and context in prostatic gland segmentation and classification. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 115–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33415-3_15 es_ES
dc.description.references Beare, R.: A locally constrained watershed transform. IEEE Trans. Pattern Anal. Mach. Intell. 28(7), 1063–1074 (2006) es_ES
dc.description.references Gertych, A., et al.: Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Comput. Med. Imaging Graph. 46, 197–208 (2015) es_ES
dc.description.references Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002) es_ES
dc.description.references Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010) es_ES
dc.description.references Huang, P., Lee, C.: Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans. Med. Imaging 28(7), 1037–1050 (2009) es_ES
dc.description.references Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem