- -

Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.)

Mostrar el registro completo del ítem

Vallespir, F.; Carcel Carrión, JA.; Marra, F.; Eim, VS.; Simal, S. (2018). Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food and Bioprocess Technology. 11(1):72-83. https://doi.org/10.1007/s11947-017-1999-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125111

Ficheros en el ítem

Metadatos del ítem

Título: Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.)
Autor: Vallespir, F Carcel Carrión, Juan Andrés Marra, F. Eim, V. S. Simal, Susana
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] The effects of freezing pre-treatment and ultrasound application during drying on microstructure, drying curves, and bioactive compounds of beetroot have been evaluated. Raw and previously frozen (at - 20 A degrees ...[+]
Palabras clave: Beetroot , Freezing , Ultrasound , Diffusional model , Quality
Derechos de uso: Reserva de todos los derechos
Fuente:
Food and Bioprocess Technology. (issn: 1935-5130 )
DOI: 10.1007/s11947-017-1999-8
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s11947-017-1999-8
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-02/
info:eu-repo/grantAgreement/MINECO//BES-2013-064131/ES/BES-2013-064131/
Agradecimientos:
The authors would like to acknowledge the INIA for the financial support (RTA2015-00060-C04-03 and RTA2015-00060-C04-02 projects) and the Spanish Government (MINECO) for the BES-2013-064131 fellowship.
Tipo: Artículo

References

Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46.

AOAC. (2006). Moisture in dried fruits 934.06, 16th ed. Maryland: Association of Analytical Communities.

Boukouvalas, C. J., Krokida, M., Maroulis, Z., & Marinos-Kouris, D. (2006). Density and porosity: literature data compilation for foodstuffs. International Journal of Food Properties, 9(4), 715–746. [+]
Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46.

AOAC. (2006). Moisture in dried fruits 934.06, 16th ed. Maryland: Association of Analytical Communities.

Boukouvalas, C. J., Krokida, M., Maroulis, Z., & Marinos-Kouris, D. (2006). Density and porosity: literature data compilation for foodstuffs. International Journal of Food Properties, 9(4), 715–746.

Cai, C., Miao, H., Qian, H., Yao, L., Wang, B., & Wang, Q. (2016). Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets. Food Chemistry, 210, 451–456.

Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185–193.

Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2011). Improvement of convective drying of carrot by applying power ultrasound—influence of mass load density. Drying Technology, 29(2), 174–182.

de la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A. & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523–e527.

Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the drying process of carrot (Daucus carota v. Nantes) on the basis of quality criteria. Drying Technology, 31(8), 951–962.

Eshtiaghi, M. N., Stute, R., & Knorr, D. (1994). High-pressure and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes. Journal of Food Science, 59(6), 1168–1170.

Fernández-López, J. A., & Almela, L. (2001). Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. Journal of Chromatography A, 913(1), 415–420.

Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470.

Fijalkowska, A., Nowacka, M., & Witrowa-rajchert, D. (2015). Effect of ultrasound waves on drying process and selected properties of beetroot tissue. Food Science Technology Quality, 2(99), 138–149.

Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132–139.

García-Pérez, J. V., Rosselló, C., Cárcel, J., De la Fuente, S., & Mulet, A. (2006). Effect of air temperature on convective drying assisted by high power ultrasound. Defect and Diffusion Forum, Trans Tech Publications, 258, 563–574.

García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27(2), 281–287.

García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265.

Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: natural plant pigments with potential application in functional foods. LWT - Food Science and Technology, 64(2), 645–649.

Gokhale, S. V., & Lele, S. S. (2014). Betalain content and antioxidant activity of beta vulgaris: effect of hot air convective drying and storage. Journal of Food Processing and Preservation, 38(1), 585–590.

González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.) Journal of Agricultural and Food Chemistry, 60(48), 11850–11858.

Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500–1508.

Janiszewska, E. (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 264, 190–196.

Kaleta, A., & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967–2978.

Kaur, K., & Singh, A. (2014). Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying. African Journal of Agricultural Research, 9(12), 1036–1044.

Kowalski, S. J., & Łechtańska, J. M. (2015). Drying of red beetroot after osmotic pretreatment: kinetics and quality considerations. Chemical and Process Engineering, 36(3), 345–354.

Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153–163.

Li, N., Lu, X., Pei, H., & Qiao, X. (2015). Effect of freezing pretreatment on the processing time and quality of black garlic. Journal of Food Process Engineering, 38(4), 329–335.

Mayor, L., Pissarra, J., & Sereno, A. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326–339.

Nayak, C. A., Suguna, K., Narasimhamurthy, K., & Rastogi, N. K. (2007). Effect of gamma irradiation on histological and textural properties of carrot, potato and beetroot. Journal of Food Engineering, 79(3), 765–770.

Nistor, O.-V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59–67.

Onwude, D. I., Hashim, N., & Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132–145.

Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511–2517.

Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables—part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329–337.

Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.) LWT - Food Science and Technology, 68, 98–104.

Phothiset, S., & Charoenrein, S. (2014). Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. Journal of the Science of Food and Agriculture, 94(2), 189–196.

Puig, A., Pérez-Munuera, I., Cárcel, J., Hernando, I., & García-Pérez, J. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624–632.

Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. M. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253–261.

Ramos, I. N., Silva, C. L. M., Sereno, A. M., & Aguilera, J. M. (2004). Quantification of microstructural changes during first stage air drying of grape tissue. Journal of Food Engineering, 62(2), 159–164.

Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., Cai, Z., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675.

Rodríguez, Ó., Eim, V. S., Simal, S., Femenia, A., & Rosselló, C. (2013). Validation of a difussion model using moisture profiles measured by means of TD-NMR in apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542–552.

Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29.

Sabarez, H. T., Gallego-Juárez, J. A., & Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30(9), 989–997.

Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology, 66, 484–489.

Sripinyowanich, J., & Noomhorm, A. (2013). Effects of freezing pretreatment, microwave-assisted vibro-fluidized bed drying and drying temperature on instant rice production and quality. Journal of Food Processing and Preservation, 37(4), 314–324.

Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451.

Székely, D., Illés, B., Stéger-Máté, M., & Monspart-Sényi, J. (2016). Effect of drying methods for inner parameters of red beetroot (Beta vulgaris L.). Acta Universitatis Sapientiae, Alimentaria, 9(1), 60–68.

Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329–334.

Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., Höglinger, O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46–55.

Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.) LWT - Food Science and Technology, 62(1, Part 2), 555–563.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem