- -

Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vallespir, F es_ES
dc.contributor.author Carcel Carrión, Juan Andrés es_ES
dc.contributor.author Marra, F. es_ES
dc.contributor.author Eim, V. S. es_ES
dc.contributor.author Simal, Susana es_ES
dc.date.accessioned 2019-09-05T20:04:49Z
dc.date.available 2019-09-05T20:04:49Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1935-5130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125111
dc.description.abstract [EN] The effects of freezing pre-treatment and ultrasound application during drying on microstructure, drying curves, and bioactive compounds of beetroot have been evaluated. Raw and previously frozen (at - 20 A degrees C) beetroots were convectively dried (40 A degrees C and 1 m/s) with and without ultrasound application using two acoustic densities (16.4 and 26.7 kW/m(3)), and a diffusional model was proposed to simulate the drying curves. Freezing pre-treatment and ultrasound application caused significant disruptions in the beetroot microstructure and reduced the drying time, enhancing the mass transfer. The external mass transfer coefficient significantly (p < 0.05) increased by 28-49% when ultrasound was applied; moreover, the effective diffusion coefficient significantly (p < 0.05) increased by 60-73% and 204-211%, respectively, due to the ultrasound application on the drying of raw and pre-frozen samples. Freezing caused significant (p < 0.05) increases in betalain and total polyphenol contents and antioxidant activity compared with the raw sample (16-57%), probably due to the release of free forms from the food matrix; meanwhile, drying had the opposite effect (8-54% decrease). Significantly (p < 0.05) higher decreases (32-81%) in bioactive compounds and antioxidant activity were observed when drying was assisted by ultrasound compared with dying without ultrasound. Therefore, freezing pre-treatment and ultrasound application enhanced mass transfer during drying. However, significant changes in quality parameters of the final product were observed. es_ES
dc.description.sponsorship The authors would like to acknowledge the INIA for the financial support (RTA2015-00060-C04-03 and RTA2015-00060-C04-02 projects) and the Spanish Government (MINECO) for the BES-2013-064131 fellowship. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Beetroot es_ES
dc.subject Freezing es_ES
dc.subject Ultrasound es_ES
dc.subject Diffusional model es_ES
dc.subject Quality es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-017-1999-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00060-C04-02/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2013-064131/ES/BES-2013-064131/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Vallespir, F.; Carcel Carrión, JA.; Marra, F.; Eim, VS.; Simal, S. (2018). Improvement of Mass Transfer by Freezing Pre-treatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food and Bioprocess Technology. 11(1):72-83. https://doi.org/10.1007/s11947-017-1999-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11947-017-1999-8 es_ES
dc.description.upvformatpinicio 72 es_ES
dc.description.upvformatpfin 83 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\383076 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Ando, Y., Maeda, Y., Mizutani, K., Wakatsuki, N., Hagiwara, S., & Nabetani, H. (2016). Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT - Food Science and Technology, 71, 40–46. es_ES
dc.description.references AOAC. (2006). Moisture in dried fruits 934.06, 16th ed. Maryland: Association of Analytical Communities. es_ES
dc.description.references Boukouvalas, C. J., Krokida, M., Maroulis, Z., & Marinos-Kouris, D. (2006). Density and porosity: literature data compilation for foodstuffs. International Journal of Food Properties, 9(4), 715–746. es_ES
dc.description.references Cai, C., Miao, H., Qian, H., Yao, L., Wang, B., & Wang, Q. (2016). Effects of industrial pre-freezing processing and freezing handling on glucosinolates and antioxidant attributes in broccoli florets. Food Chemistry, 210, 451–456. es_ES
dc.description.references Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2007). Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology, 25(1), 185–193. es_ES
dc.description.references Cárcel, J. A., García-Pérez, J. V., Riera, E., & Mulet, A. (2011). Improvement of convective drying of carrot by applying power ultrasound—influence of mass load density. Drying Technology, 29(2), 174–182. es_ES
dc.description.references de la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A. & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, e523–e527. es_ES
dc.description.references Eim, V. S., Urrea, D., Rosselló, C., García-Pérez, J. V., Femenia, A., & Simal, S. (2013). Optimization of the drying process of carrot (Daucus carota v. Nantes) on the basis of quality criteria. Drying Technology, 31(8), 951–962. es_ES
dc.description.references Eshtiaghi, M. N., Stute, R., & Knorr, D. (1994). High-pressure and freezing pretreatment effects on drying, rehydration, texture and color of green beans, carrots and potatoes. Journal of Food Science, 59(6), 1168–1170. es_ES
dc.description.references Fernández-López, J. A., & Almela, L. (2001). Application of high-performance liquid chromatography to the characterization of the betalain pigments in prickly pear fruits. Journal of Chromatography A, 913(1), 415–420. es_ES
dc.description.references Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461–470. es_ES
dc.description.references Fijalkowska, A., Nowacka, M., & Witrowa-rajchert, D. (2015). Effect of ultrasound waves on drying process and selected properties of beetroot tissue. Food Science Technology Quality, 2(99), 138–149. es_ES
dc.description.references Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132–139. es_ES
dc.description.references García-Pérez, J. V., Rosselló, C., Cárcel, J., De la Fuente, S., & Mulet, A. (2006). Effect of air temperature on convective drying assisted by high power ultrasound. Defect and Diffusion Forum, Trans Tech Publications, 258, 563–574. es_ES
dc.description.references García-Pérez, J. V., Cárcel, J. A., Riera, E., & Mulet, A. (2009). Influence of the applied acoustic energy on the drying of carrots and lemon peel. Drying Technology, 27(2), 281–287. es_ES
dc.description.references García-Pérez, J. V., Ortuño, C., Puig, A., Cárcel, J. A., & Perez-Munuera, I. (2012). Enhancement of water transport and microstructural changes induced by high-intensity ultrasound application on orange peel drying. Food and Bioprocess Technology, 5(6), 2256–2265. es_ES
dc.description.references Gengatharan, A., Dykes, G. A., & Choo, W. S. (2015). Betalains: natural plant pigments with potential application in functional foods. LWT - Food Science and Technology, 64(2), 645–649. es_ES
dc.description.references Gokhale, S. V., & Lele, S. S. (2014). Betalain content and antioxidant activity of beta vulgaris: effect of hot air convective drying and storage. Journal of Food Processing and Preservation, 38(1), 585–590. es_ES
dc.description.references González-Centeno, M. R., Jourdes, M., Femenia, A., Simal, S., Rosselló, C., & Teissedre, P.-L. (2012). Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.) Journal of Agricultural and Food Chemistry, 60(48), 11850–11858. es_ES
dc.description.references Heredia, J. B., & Cisneros-Zevallos, L. (2009). The effects of exogenous ethylene and methyl jasmonate on the accumulation of phenolic antioxidants in selected whole and wounded fresh produce. Food Chemistry, 115(4), 1500–1508. es_ES
dc.description.references Janiszewska, E. (2014). Microencapsulated beetroot juice as a potential source of betalain. Powder Technology, 264, 190–196. es_ES
dc.description.references Kaleta, A., & Górnicki, K. (2010). Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12), 2967–2978. es_ES
dc.description.references Kaur, K., & Singh, A. (2014). Drying kinetics and quality characteristics of beetroot slices under hot air followed by microwave finish drying. African Journal of Agricultural Research, 9(12), 1036–1044. es_ES
dc.description.references Kowalski, S. J., & Łechtańska, J. M. (2015). Drying of red beetroot after osmotic pretreatment: kinetics and quality considerations. Chemical and Process Engineering, 36(3), 345–354. es_ES
dc.description.references Lewicki, P. P. (2006). Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4), 153–163. es_ES
dc.description.references Li, N., Lu, X., Pei, H., & Qiao, X. (2015). Effect of freezing pretreatment on the processing time and quality of black garlic. Journal of Food Process Engineering, 38(4), 329–335. es_ES
dc.description.references Mayor, L., Pissarra, J., & Sereno, A. (2008). Microstructural changes during osmotic dehydration of parenchymatic pumpkin tissue. Journal of Food Engineering, 85(3), 326–339. es_ES
dc.description.references Nayak, C. A., Suguna, K., Narasimhamurthy, K., & Rastogi, N. K. (2007). Effect of gamma irradiation on histological and textural properties of carrot, potato and beetroot. Journal of Food Engineering, 79(3), 765–770. es_ES
dc.description.references Nistor, O.-V., Seremet, L., Andronoiu, D. G., Rudi, L., & Botez, E. (2017). Influence of different drying methods on the physicochemical properties of red beetroot (Beta vulgaris L. var. Cylindra). Food Chemistry, 236, 59–67. es_ES
dc.description.references Onwude, D. I., Hashim, N., & Chen, G. (2016). Recent advances of novel thermal combined hot air drying of agricultural crops. Trends in Food Science & Technology, 57, 132–145. es_ES
dc.description.references Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511–2517. es_ES
dc.description.references Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., & Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables—part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329–337. es_ES
dc.description.references Paciulli, M., Medina-Meza, I. G., Chiavaro, E., & Barbosa-Cánovas, G. V. (2016). Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.) LWT - Food Science and Technology, 68, 98–104. es_ES
dc.description.references Phothiset, S., & Charoenrein, S. (2014). Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues. Journal of the Science of Food and Agriculture, 94(2), 189–196. es_ES
dc.description.references Puig, A., Pérez-Munuera, I., Cárcel, J., Hernando, I., & García-Pérez, J. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624–632. es_ES
dc.description.references Ramírez, C., Troncoso, E., Muñoz, J., & Aguilera, J. M. (2011). Microstructure analysis on pre-treated apple slices and its effect on water release during air drying. Journal of Food Engineering, 106(3), 253–261. es_ES
dc.description.references Ramos, I. N., Silva, C. L. M., Sereno, A. M., & Aguilera, J. M. (2004). Quantification of microstructural changes during first stage air drying of grape tissue. Journal of Food Engineering, 62(2), 159–164. es_ES
dc.description.references Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., Cai, Z., Knorr, D., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670–675. es_ES
dc.description.references Rodríguez, Ó., Eim, V. S., Simal, S., Femenia, A., & Rosselló, C. (2013). Validation of a difussion model using moisture profiles measured by means of TD-NMR in apples (Malus domestica). Food and Bioprocess Technology, 6(2), 542–552. es_ES
dc.description.references Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21–29. es_ES
dc.description.references Sabarez, H. T., Gallego-Juárez, J. A., & Riera, E. (2012). Ultrasonic-assisted convective drying of apple slices. Drying Technology, 30(9), 989–997. es_ES
dc.description.references Samoticha, J., Wojdyło, A., & Lech, K. (2016). The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT - Food Science and Technology, 66, 484–489. es_ES
dc.description.references Sripinyowanich, J., & Noomhorm, A. (2013). Effects of freezing pretreatment, microwave-assisted vibro-fluidized bed drying and drying temperature on instant rice production and quality. Journal of Food Processing and Preservation, 37(4), 314–324. es_ES
dc.description.references Stintzing, F. C., Herbach, K. M., Mosshammer, M. R., Carle, R., Yi, W., Sellappan, S., Akoh, C. C., Bunch, R., & Felker, P. (2005). Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. Journal of Agricultural and Food Chemistry, 53(2), 442–451. es_ES
dc.description.references Székely, D., Illés, B., Stéger-Máté, M., & Monspart-Sényi, J. (2016). Effect of drying methods for inner parameters of red beetroot (Beta vulgaris L.). Acta Universitatis Sapientiae, Alimentaria, 9(1), 60–68. es_ES
dc.description.references Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329–334. es_ES
dc.description.references Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., Höglinger, O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal of Food Composition and Analysis, 42, 46–55. es_ES
dc.description.references Zielinska, M., Sadowski, P., & Błaszczak, W. (2015). Freezing/thawing and microwave-assisted drying of blueberries (Vaccinium corymbosum L.) LWT - Food Science and Technology, 62(1, Part 2), 555–563. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem