- -

A material-performance-based database for FRC and RC elements under shear loading

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A material-performance-based database for FRC and RC elements under shear loading

Show full item record

Cuenca Asensio, E.; Conforti, A.; Minelli, F.; Plizzari, GA.; Navarro-Gregori, J.; Serna Ros, P. (2018). A material-performance-based database for FRC and RC elements under shear loading. Materials and Structures. 51(1):1-16. https://doi.org/10.1617/s11527-017-1130-7

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125126

Files in this item

Item Metadata

Title: A material-performance-based database for FRC and RC elements under shear loading
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Issued date:
Abstract:
[EN] The shear strength of elements reinforced by fibres is predicted by Codees using formulations generally developed from a limited set of test results.
Subjects: Steel fibres , Macro-synthetic fibres , Fibre reinforced concrete , Shear , Shear database , Model code 2010
Copyrigths: Cerrado
Source:
Materials and Structures. (issn: 1359-5997 )
DOI: 10.1617/s11527-017-1130-7
Publisher:
Springer - RILEM Publishing
Publisher version: http://doi.org/10.1617/s11527-017-1130-7
Type: Artículo

References

Imam M, Vandewalle L, Mortelmans F, Gemert VD (1997) Shear domain of fibre-reinforced high-strength concrete beams. Eng Struct 19:738–747

Di Prisco M, Plizzari GA, Vandewalle L (2010) Shear and punching shear in RC and FRC elements. In: fib Bulletin 57

Dinh HH, Parra-Montesinos GJ, Wight J (2010) Shear behaviour of steel fibre-reinforced concrete beams without stirrup reinforcement. ACI Struct J 107:597–606 [+]
Imam M, Vandewalle L, Mortelmans F, Gemert VD (1997) Shear domain of fibre-reinforced high-strength concrete beams. Eng Struct 19:738–747

Di Prisco M, Plizzari GA, Vandewalle L (2010) Shear and punching shear in RC and FRC elements. In: fib Bulletin 57

Dinh HH, Parra-Montesinos GJ, Wight J (2010) Shear behaviour of steel fibre-reinforced concrete beams without stirrup reinforcement. ACI Struct J 107:597–606

Cucchiara C, La Mendola L, Papia M (2004) Effectiveness of stirrups and steel fibers as shear reinforcement. Cement Concr Compos 26:777–786

Kovács I, Balázs GL (2003) Structural behavior of steel fiber reinforced concrete. J Struct Concr 4:57–63

Shoaib A, Lubell AS, Bindiganavile VS (2014) Size effect in shear for steel-fiber-reinforced concrete members without stirrups. ACI Struct J 111:1081–1090

Altoubat S, Yazdanbakhsh A, Rieder KA (2009) Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups. ACI Mater J 106:38–389

Soetens T, Matthys S, Hertelé S, De Waele W (2017) Shear behavior of prestressed precast SFRC girders. Eng Struct 142:20–35

Conforti A, Minelli F (2016) Compression field modelling of fibre reinforced concrete shear critical deep beams: a numerical study. Mater Struct 49(8):3369–3383

Ding Y, You Z, Jalali S (2011) The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete. Eng Struct 33:107–117

Cuenca E, Echegaray-Oviedo J, Serna P (2015) Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Compos B Eng 75:135–147

Cuenca E, Serna P (2013) Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete. Compos B Eng 45:952–964

RILEM TC 162-TDF (2003) Test and design methods for steel fiber reinforced concrete: σ-ε-design method. Final recommendation. Mater Struct 36:560–567

Federation Internationale du Beton (fib) (2012) Model Code 2010-final draft, Vol. 1, Bulletin 65 and Vol. 2, Bulletin 66. Lausanne

American Concrete Institute (2014) Building code requirements for structural concrete (ACI 318-14) and commentary. American Concrete Institute, Detroit

EN 14651 (2005) Test method for metallic fibre concrete. Measuring the flexural tensile strength (limit of proportionality (LOP), residual). British Standards Institution, London

Amin A, Foster SJ, Muttoni A (2015) Derivation of the σ-w relationship for SFRC from prism bending tests. Struct Concr 16(1):93–105

Conforti A, Minelli F, Plizzari G, Tiberti G (2017) Comparing test methods for the mechanical characterization of fiber reinforced concrete. Struct Concr. https://doi.org/10.1002/suco.201700057

Yazdanbakhsh A, Altoubat S, Rieder KA (2015) Analytical study on shear strength of macro synthetic fiber reinforced concrete beams. Eng Struct 100:622–632

Kim SK, Lee SH, Hwang JH, Kuchma DA (2012) Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcement. Compos B Eng 43:2324–2334

Parra-Montesinos GJ (2006) Shear strength of beams with deformed steel fibers. Concr Int 28:57–66

Zhang F, Ding Y, Xu J, Zhang Y, Zhu W, Shi Y (2016) Shear strength prediction for steel fiber reinforced concrete beams without stirrups. Eng Struct 127:101–116

Voo YN, Poon WK, Foster SJ (2010) Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. J Struct Eng 136:1393–1400

Amin A, Foster SJ (2016) Shear strength of steel fibre reinforced concrete beams with stirrups. Eng Struct 111:323–332

Reineck KH, Kuchma DA, Kim KS, Marx S (2003) Shear database for reinforced concrete members without shear reinforcement. ACI Struct J 100:240–249

Reineck KH, Bentz EC, Fitik B, Kuchma DA, Bayrak O (2013) ACI-DAfStb database of shear tests on slender reinforced concrete beams without stirrups. ACI Struct J 110:867–876

European Committee for Standardization (2004) Eurocode 2: design of concrete structures-Part 1-1: general rules and rules for buildings. Final Draft, prEN 1992-1-1, Brussels

Minelli F, Plizzari GA (2013) On the effectiveness of steel fibers as shear reinforcement. ACI Struct J 110(3):379–389

Bertozzi A, Reggia A (2006) Fibre di acciaio per l’armatura minima a taglio delle travi (in Italian). MS thesis. University of Brescia, Brescia

Minelli F, Plizzari GA, Vecchio FJ (2007) Influence of steel fibers on full-scale RC beams under shear loading. In: Proceedings of the international conference FraMCoS–high performance concrete, Brick-Masonry and environmental aspects. Catania, Italy

Conforti A (2008) Il traliccio ad inclinazione variabile per il progetto a taglio di travi fibrorinforzate: studio sperimentale e analitico (in Italian). MS thesis. University of Brescia, Brescia

Minelli F, Conforti A, Cuenca E, Plizzari G (2014) Are steel fibres able to mitigate or eliminate size effect in shear. Mater Struct 47(3):459–473

Conforti A, Minelli F, Tinini A, Plizzari GA, Moro S (2014) Structural applicability of polypropylene fibres: deep and wide-shallow beams subjected to shear. ACI Spec Publ 310:171–180

Conforti A, Minelli F, Plizzari GA (2013) Wide-shallow beams with and without steel fibres: a peculiar behaviour in shear and flexure. Compos B Eng 51:282–290

Conforti A, Minelli F, Tinini A, Plizzari GA (2015) Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams. Eng Struct 88:12–21

Conforti A, Minelli F, Plizzari GA (2017) Influence of width-to-effective depth ratio on shear strength of RC elements without web reinforcement. ACI Struct J 114(4):995–1006. https://doi.org/10.14359/51689681

Cuenca E (2015) On shear behavior of structural elements made of steel fiber reinforced concrete. Ph.D. dissertation. Springer Thesis. Springer International Publishing, Switzerland

Cuenca E, Serna P (2013) Shear behavior of prestressed precast beams made of self-compacting fiber reinforced concrete. Constr Build Mater 45:145–156

Ortiz-Navas F, Navarro-Gregori J, Leiva-Herdocia GE, Serna-Ros P, Cuenca E (2018) An experimental study on the shear behaviour of reinforced concrete beams including macro-synthetic fibres. Constr Build Mater (in press)

Barr BIG, Lee MK, Hansen P, Dupont D, Erdem E, Schaerlaekens S, Schnutgen B, Stand H, Vandewalle L (2003) Round-Robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—test method evaluation. Mater Struct 36:609–620

Stähli P, Custer R, van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41:189–196

Barragán B, Gettu R, Agulló L, Zerbino R (2006) Shear failure of steel fiber-reinforced concrete based on push-off tests. ACI Mater J 103(4):251–257

Echegaray-Oviedo J, Navarro-Gregori J, Cuenca E, Serna P (2017) Modified push-off test for analysing the shear behaviour of concrete cracks. Strain 53(6):e12239. https://doi.org/10.1111/str.12239

Echegaray-Oviedo J, Navarro-Gregori J, Cuenca E, Serna P (2013) Upgrading the push-off test to study the mechanisms of shear transfer in FRC elements. In: Proceedings of the 8th international conference on fracture mechanics of concrete and concrete structures (FraMCoS), pp 1012–1021

Minelli F, Plizzari GA (2008) Shear design of FRC members with little or no conventional shear reinforcement. In: Proceedings of the international FIB symposium 2008—tailor made concrete structures: new solutions for our society, Amsterdam, Netherlands

Voo JYL, Foster SJ (2003) Variable engagement model for fibre-reinforced concrete in tension. UNICIV report R-420. School of Civil and Environmental Engineering, The University of New South Wales, Sidney. ISBN: 858413876

Bentz EC, Vecchio FJ, Collins MP (2006) The simplified MCFT for calculating the shear strength of reinforced concrete elements. ACI Struct J 103:614–624

Foster SJ, Agarwal A, Amin A (2017) Design of steel fiber reinforced concrete beams for shear using inverse analysis for determination of residual tensile strength. Struct Concr. https://doi.org/10.1002/suco.201700100

[-]

This item appears in the following Collection(s)

Show full item record