- -

A material-performance-based database for FRC and RC elements under shear loading

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

A material-performance-based database for FRC and RC elements under shear loading

Show simple item record

Files in this item

dc.contributor.author Cuenca Asensio, Estefanía es_ES
dc.contributor.author Conforti, Antonio es_ES
dc.contributor.author Minelli, Fausto es_ES
dc.contributor.author Plizzari, Giovanni A. es_ES
dc.contributor.author Navarro-Gregori, Juan es_ES
dc.contributor.author Serna Ros, Pedro es_ES
dc.date.accessioned 2019-09-05T20:05:21Z
dc.date.available 2019-09-05T20:05:21Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1359-5997 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125126
dc.description.abstract [EN] The shear strength of elements reinforced by fibres is predicted by Codees using formulations generally developed from a limited set of test results. es_ES
dc.language Inglés es_ES
dc.publisher Springer - RILEM Publishing es_ES
dc.relation.ispartof Materials and Structures es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Steel fibres es_ES
dc.subject Macro-synthetic fibres es_ES
dc.subject Fibre reinforced concrete es_ES
dc.subject Shear es_ES
dc.subject Shear database es_ES
dc.subject Model code 2010 es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title A material-performance-based database for FRC and RC elements under shear loading es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1617/s11527-017-1130-7 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Cuenca Asensio, E.; Conforti, A.; Minelli, F.; Plizzari, GA.; Navarro-Gregori, J.; Serna Ros, P. (2018). A material-performance-based database for FRC and RC elements under shear loading. Materials and Structures. 51(1):1-16. https://doi.org/10.1617/s11527-017-1130-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1617/s11527-017-1130-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 51 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela 380155 es_ES
dc.relation.references Imam M, Vandewalle L, Mortelmans F, Gemert VD (1997) Shear domain of fibre-reinforced high-strength concrete beams. Eng Struct 19:738–747 es_ES
dc.relation.references Di Prisco M, Plizzari GA, Vandewalle L (2010) Shear and punching shear in RC and FRC elements. In: fib Bulletin 57 es_ES
dc.relation.references Dinh HH, Parra-Montesinos GJ, Wight J (2010) Shear behaviour of steel fibre-reinforced concrete beams without stirrup reinforcement. ACI Struct J 107:597–606 es_ES
dc.relation.references Cucchiara C, La Mendola L, Papia M (2004) Effectiveness of stirrups and steel fibers as shear reinforcement. Cement Concr Compos 26:777–786 es_ES
dc.relation.references Kovács I, Balázs GL (2003) Structural behavior of steel fiber reinforced concrete. J Struct Concr 4:57–63 es_ES
dc.relation.references Shoaib A, Lubell AS, Bindiganavile VS (2014) Size effect in shear for steel-fiber-reinforced concrete members without stirrups. ACI Struct J 111:1081–1090 es_ES
dc.relation.references Altoubat S, Yazdanbakhsh A, Rieder KA (2009) Shear behavior of macro-synthetic fiber-reinforced concrete beams without stirrups. ACI Mater J 106:38–389 es_ES
dc.relation.references Soetens T, Matthys S, Hertelé S, De Waele W (2017) Shear behavior of prestressed precast SFRC girders. Eng Struct 142:20–35 es_ES
dc.relation.references Conforti A, Minelli F (2016) Compression field modelling of fibre reinforced concrete shear critical deep beams: a numerical study. Mater Struct 49(8):3369–3383 es_ES
dc.relation.references Ding Y, You Z, Jalali S (2011) The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete. Eng Struct 33:107–117 es_ES
dc.relation.references Cuenca E, Echegaray-Oviedo J, Serna P (2015) Influence of concrete matrix and type of fiber on the shear behavior of self-compacting fiber reinforced concrete beams. Compos B Eng 75:135–147 es_ES
dc.relation.references Cuenca E, Serna P (2013) Failure modes and shear design of prestressed hollow core slabs made of fiber-reinforced concrete. Compos B Eng 45:952–964 es_ES
dc.relation.references RILEM TC 162-TDF (2003) Test and design methods for steel fiber reinforced concrete: σ-ε-design method. Final recommendation. Mater Struct 36:560–567 es_ES
dc.relation.references Federation Internationale du Beton (fib) (2012) Model Code 2010-final draft, Vol. 1, Bulletin 65 and Vol. 2, Bulletin 66. Lausanne es_ES
dc.relation.references American Concrete Institute (2014) Building code requirements for structural concrete (ACI 318-14) and commentary. American Concrete Institute, Detroit es_ES
dc.relation.references EN 14651 (2005) Test method for metallic fibre concrete. Measuring the flexural tensile strength (limit of proportionality (LOP), residual). British Standards Institution, London es_ES
dc.relation.references Amin A, Foster SJ, Muttoni A (2015) Derivation of the σ-w relationship for SFRC from prism bending tests. Struct Concr 16(1):93–105 es_ES
dc.relation.references Conforti A, Minelli F, Plizzari G, Tiberti G (2017) Comparing test methods for the mechanical characterization of fiber reinforced concrete. Struct Concr. https://doi.org/10.1002/suco.201700057 es_ES
dc.relation.references Yazdanbakhsh A, Altoubat S, Rieder KA (2015) Analytical study on shear strength of macro synthetic fiber reinforced concrete beams. Eng Struct 100:622–632 es_ES
dc.relation.references Kim SK, Lee SH, Hwang JH, Kuchma DA (2012) Shear behavior model for steel fiber-reinforced concrete members without transverse reinforcement. Compos B Eng 43:2324–2334 es_ES
dc.relation.references Parra-Montesinos GJ (2006) Shear strength of beams with deformed steel fibers. Concr Int 28:57–66 es_ES
dc.relation.references Zhang F, Ding Y, Xu J, Zhang Y, Zhu W, Shi Y (2016) Shear strength prediction for steel fiber reinforced concrete beams without stirrups. Eng Struct 127:101–116 es_ES
dc.relation.references Voo YN, Poon WK, Foster SJ (2010) Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. J Struct Eng 136:1393–1400 es_ES
dc.relation.references Amin A, Foster SJ (2016) Shear strength of steel fibre reinforced concrete beams with stirrups. Eng Struct 111:323–332 es_ES
dc.relation.references Reineck KH, Kuchma DA, Kim KS, Marx S (2003) Shear database for reinforced concrete members without shear reinforcement. ACI Struct J 100:240–249 es_ES
dc.relation.references Reineck KH, Bentz EC, Fitik B, Kuchma DA, Bayrak O (2013) ACI-DAfStb database of shear tests on slender reinforced concrete beams without stirrups. ACI Struct J 110:867–876 es_ES
dc.relation.references European Committee for Standardization (2004) Eurocode 2: design of concrete structures-Part 1-1: general rules and rules for buildings. Final Draft, prEN 1992-1-1, Brussels es_ES
dc.relation.references Minelli F, Plizzari GA (2013) On the effectiveness of steel fibers as shear reinforcement. ACI Struct J 110(3):379–389 es_ES
dc.relation.references Bertozzi A, Reggia A (2006) Fibre di acciaio per l’armatura minima a taglio delle travi (in Italian). MS thesis. University of Brescia, Brescia es_ES
dc.relation.references Minelli F, Plizzari GA, Vecchio FJ (2007) Influence of steel fibers on full-scale RC beams under shear loading. In: Proceedings of the international conference FraMCoS–high performance concrete, Brick-Masonry and environmental aspects. Catania, Italy es_ES
dc.relation.references Conforti A (2008) Il traliccio ad inclinazione variabile per il progetto a taglio di travi fibrorinforzate: studio sperimentale e analitico (in Italian). MS thesis. University of Brescia, Brescia es_ES
dc.relation.references Minelli F, Conforti A, Cuenca E, Plizzari G (2014) Are steel fibres able to mitigate or eliminate size effect in shear. Mater Struct 47(3):459–473 es_ES
dc.relation.references Conforti A, Minelli F, Tinini A, Plizzari GA, Moro S (2014) Structural applicability of polypropylene fibres: deep and wide-shallow beams subjected to shear. ACI Spec Publ 310:171–180 es_ES
dc.relation.references Conforti A, Minelli F, Plizzari GA (2013) Wide-shallow beams with and without steel fibres: a peculiar behaviour in shear and flexure. Compos B Eng 51:282–290 es_ES
dc.relation.references Conforti A, Minelli F, Tinini A, Plizzari GA (2015) Influence of polypropylene fibre reinforcement and width-to-effective depth ratio in wide-shallow beams. Eng Struct 88:12–21 es_ES
dc.relation.references Conforti A, Minelli F, Plizzari GA (2017) Influence of width-to-effective depth ratio on shear strength of RC elements without web reinforcement. ACI Struct J 114(4):995–1006. https://doi.org/10.14359/51689681 es_ES
dc.relation.references Cuenca E (2015) On shear behavior of structural elements made of steel fiber reinforced concrete. Ph.D. dissertation. Springer Thesis. Springer International Publishing, Switzerland es_ES
dc.relation.references Cuenca E, Serna P (2013) Shear behavior of prestressed precast beams made of self-compacting fiber reinforced concrete. Constr Build Mater 45:145–156 es_ES
dc.relation.references Ortiz-Navas F, Navarro-Gregori J, Leiva-Herdocia GE, Serna-Ros P, Cuenca E (2018) An experimental study on the shear behaviour of reinforced concrete beams including macro-synthetic fibres. Constr Build Mater (in press) es_ES
dc.relation.references Barr BIG, Lee MK, Hansen P, Dupont D, Erdem E, Schaerlaekens S, Schnutgen B, Stand H, Vandewalle L (2003) Round-Robin analysis of the RILEM TC 162-TDF beam-bending test: Part 1—test method evaluation. Mater Struct 36:609–620 es_ES
dc.relation.references Stähli P, Custer R, van Mier JGM (2008) On flow properties, fibre distribution, fibre orientation and flexural behaviour of FRC. Mater Struct 41:189–196 es_ES
dc.relation.references Barragán B, Gettu R, Agulló L, Zerbino R (2006) Shear failure of steel fiber-reinforced concrete based on push-off tests. ACI Mater J 103(4):251–257 es_ES
dc.relation.references Echegaray-Oviedo J, Navarro-Gregori J, Cuenca E, Serna P (2017) Modified push-off test for analysing the shear behaviour of concrete cracks. Strain 53(6):e12239. https://doi.org/10.1111/str.12239 es_ES
dc.relation.references Echegaray-Oviedo J, Navarro-Gregori J, Cuenca E, Serna P (2013) Upgrading the push-off test to study the mechanisms of shear transfer in FRC elements. In: Proceedings of the 8th international conference on fracture mechanics of concrete and concrete structures (FraMCoS), pp 1012–1021 es_ES
dc.relation.references Minelli F, Plizzari GA (2008) Shear design of FRC members with little or no conventional shear reinforcement. In: Proceedings of the international FIB symposium 2008—tailor made concrete structures: new solutions for our society, Amsterdam, Netherlands es_ES
dc.relation.references Voo JYL, Foster SJ (2003) Variable engagement model for fibre-reinforced concrete in tension. UNICIV report R-420. School of Civil and Environmental Engineering, The University of New South Wales, Sidney. ISBN: 858413876 es_ES
dc.relation.references Bentz EC, Vecchio FJ, Collins MP (2006) The simplified MCFT for calculating the shear strength of reinforced concrete elements. ACI Struct J 103:614–624 es_ES
dc.relation.references Foster SJ, Agarwal A, Amin A (2017) Design of steel fiber reinforced concrete beams for shear using inverse analysis for determination of residual tensile strength. Struct Concr. https://doi.org/10.1002/suco.201700100 es_ES


This item appears in the following Collection(s)

Show simple item record