Mostrar el registro sencillo del ítem
dc.contributor.author | Calatayud-Gregori, Julia | es_ES |
dc.contributor.author | Cortés, J.-C. | es_ES |
dc.contributor.author | Jornet-Sanz, Marc | es_ES |
dc.contributor.author | Villanueva Micó, Rafael Jacinto | es_ES |
dc.date.accessioned | 2019-09-07T20:02:26Z | |
dc.date.available | 2019-09-07T20:02:26Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0170-4214 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/125225 | |
dc.description.abstract | [EN] Population dynamics models consisting of nonlinear difference equations allow us to get a better understanding of the processes involved in epidemiology. Usually, these mathematical models are studied under a deterministic approach. However, in order to take into account the uncertainties associated with the measurements of the model input parameters, a more realistic approach would be to consider these inputs as random variables. In this paper, we study the random time-discrete epidemiological models SIS, SIR, SIRS, and SEIR using a powerful unified approach based upon the so-called adaptive generalized polynomial chaos (gPC) technique. The solution to these random difference equations is a stochastic process in discrete time, which represents the number of susceptible, infected, recovered, etc individuals at each time step. We show, via numerical experiments, how adaptive gPC permits quantifying the uncertainty for the solution stochastic process of the aforementioned random time-discrete epidemiological model and obtaining accurate results at a cheap computational expense. We also highlight how adaptive gPC can be applied in practice, by means of an example using real data. | es_ES |
dc.description.sponsorship | This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. The authors are grateful for the helpful and valuable reviewers' comments that have considerably improved the final form of this manuscript. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Adaptive gPC | es_ES |
dc.subject | Computational methods for stochastic equations | es_ES |
dc.subject | Computational uncertainty quantification | es_ES |
dc.subject | Random nonlinear difference equations model | es_ES |
dc.subject | Random population dynamics model | es_ES |
dc.subject | Random time-discrete epidemiological model | es_ES |
dc.subject | Stochastic difference equations | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/mma.5315 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M.; Villanueva Micó, RJ. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences. 41(18):9618-9627. https://doi.org/10.1002/mma.5315 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/mma.5315 | es_ES |
dc.description.upvformatpinicio | 9618 | es_ES |
dc.description.upvformatpfin | 9627 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 41 | es_ES |
dc.description.issue | 18 | es_ES |
dc.relation.pasarela | S\368299 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |