- -

Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calatayud-Gregori, Julia es_ES
dc.contributor.author Cortés, J.-C. es_ES
dc.contributor.author Jornet-Sanz, Marc es_ES
dc.contributor.author Villanueva Micó, Rafael Jacinto es_ES
dc.date.accessioned 2019-09-07T20:02:26Z
dc.date.available 2019-09-07T20:02:26Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0170-4214 es_ES
dc.identifier.uri http://hdl.handle.net/10251/125225
dc.description.abstract [EN] Population dynamics models consisting of nonlinear difference equations allow us to get a better understanding of the processes involved in epidemiology. Usually, these mathematical models are studied under a deterministic approach. However, in order to take into account the uncertainties associated with the measurements of the model input parameters, a more realistic approach would be to consider these inputs as random variables. In this paper, we study the random time-discrete epidemiological models SIS, SIR, SIRS, and SEIR using a powerful unified approach based upon the so-called adaptive generalized polynomial chaos (gPC) technique. The solution to these random difference equations is a stochastic process in discrete time, which represents the number of susceptible, infected, recovered, etc individuals at each time step. We show, via numerical experiments, how adaptive gPC permits quantifying the uncertainty for the solution stochastic process of the aforementioned random time-discrete epidemiological model and obtaining accurate results at a cheap computational expense. We also highlight how adaptive gPC can be applied in practice, by means of an example using real data. es_ES
dc.description.sponsorship This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia. The authors are grateful for the helpful and valuable reviewers' comments that have considerably improved the final form of this manuscript. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Mathematical Methods in the Applied Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Adaptive gPC es_ES
dc.subject Computational methods for stochastic equations es_ES
dc.subject Computational uncertainty quantification es_ES
dc.subject Random nonlinear difference equations model es_ES
dc.subject Random population dynamics model es_ES
dc.subject Random time-discrete epidemiological model es_ES
dc.subject Stochastic difference equations es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/mma.5315 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M.; Villanueva Micó, RJ. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences. 41(18):9618-9627. https://doi.org/10.1002/mma.5315 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/mma.5315 es_ES
dc.description.upvformatpinicio 9618 es_ES
dc.description.upvformatpfin 9627 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 41 es_ES
dc.description.issue 18 es_ES
dc.relation.pasarela S\368299 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem