Mostrar el registro completo del ítem
Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M.; Villanueva Micó, RJ. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences. 41(18):9618-9627. https://doi.org/10.1002/mma.5315
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125225
Título: | Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC | |
Autor: | Calatayud-Gregori, Julia Jornet-Sanz, Marc | |
Entidad UPV: |
|
|
Fecha difusión: |
|
|
Resumen: |
[EN] Population dynamics models consisting of nonlinear difference equations allow us to get a better understanding of the processes involved in epidemiology. Usually, these mathematical models are studied under a deterministic ...[+]
|
|
Palabras clave: |
|
|
Derechos de uso: | Reserva de todos los derechos | |
Fuente: |
|
|
DOI: |
|
|
Editorial: |
|
|
Versión del editor: | http://doi.org/10.1002/mma.5315 | |
Código del Proyecto: |
|
|
Agradecimientos: |
This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo ...[+]
|
|
Tipo: |
|