- -

Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation

Mostrar el registro completo del ítem

Romero-Méndez, R.; Pérez-Gutiérrez, FG.; Oviedo-Tolentino, F.; Berjano, E. (2019). Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation. Mathematical Problems in Engineering. 1-10. https://doi.org/10.1155/2019/2404818

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/125579

Ficheros en el ítem

Metadatos del ítem

Título: Analytical Solution for Electrical Problem Forced by a Finite-Length Needle Electrode: Implications in Electrostimulation
Autor: Romero-Méndez, Ricardo Pérez-Gutiérrez, Francisco G. Oviedo-Tolentino, Francisco Berjano, Enrique
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Fecha difusión:
Resumen:
[EN] Needle electrodes, widely used in clinical procedures, are responsible for creating an electric field in the treated biological tissue. This is achieved by setting a constant voltage along the length of their metallic ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Mathematical Problems in Engineering. (issn: 1024-123X )
DOI: 10.1155/2019/2404818
Editorial:
Hindawi Limited
Versión del editor: https://doi.org/10.1155/2019/2404818
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/
Agradecimientos:
This work was supported by the Universidad Autonoma de San Luis Potosi (Mexico), which granted R. Romero-Mendez who is on a sabbatical leave to do research in the field of biomedical engineering. This work was supported ...[+]
Tipo: Artículo

References

Mulier, S., Miao, Y., Mulier, P., Dupas, B., Pereira, P., de Baere, T., … Ni, Y. (2005). Electrodes and multiple electrode systems for radiofrequency ablation: a proposal for updated terminology. European Radiology, 15(4), 798-808. doi:10.1007/s00330-004-2584-x

Merrill, D. R., Bikson, M., & Jefferys, J. G. R. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171-198. doi:10.1016/j.jneumeth.2004.10.020

Cogan, S. F. (2008). Neural Stimulation and Recording Electrodes. Annual Review of Biomedical Engineering, 10(1), 275-309. doi:10.1146/annurev.bioeng.10.061807.160518 [+]
Mulier, S., Miao, Y., Mulier, P., Dupas, B., Pereira, P., de Baere, T., … Ni, Y. (2005). Electrodes and multiple electrode systems for radiofrequency ablation: a proposal for updated terminology. European Radiology, 15(4), 798-808. doi:10.1007/s00330-004-2584-x

Merrill, D. R., Bikson, M., & Jefferys, J. G. R. (2005). Electrical stimulation of excitable tissue: design of efficacious and safe protocols. Journal of Neuroscience Methods, 141(2), 171-198. doi:10.1016/j.jneumeth.2004.10.020

Cogan, S. F. (2008). Neural Stimulation and Recording Electrodes. Annual Review of Biomedical Engineering, 10(1), 275-309. doi:10.1146/annurev.bioeng.10.061807.160518

Kwon, H., Rutkove, S. B., & Sanchez, B. (2017). Recording characteristics of electrical impedance myography needle electrodes. Physiological Measurement, 38(9), 1748-1765. doi:10.1088/1361-6579/aa80ac

Burdío, F., Berjano, E. J., Navarro, A., Burdío, J. M., Güemes, A., Grande, L., … de Gregorio, M. A. (2007). RF tumor ablation with internally cooled electrodes and saline infusion: what is the optimal location of the saline infusion? BioMedical Engineering OnLine, 6(1), 30. doi:10.1186/1475-925x-6-30

Zhang, B., Moser, M. A. J., Zhang, E. M., Luo, Y., Liu, C., & Zhang, W. (2016). A review of radiofrequency ablation: Large target tissue necrosis and mathematical modelling. Physica Medica, 32(8), 961-971. doi:10.1016/j.ejmp.2016.07.092

Samoudi, A. M., Kampusch, S., Tanghe, E., Széles, J. C., Martens, L., Kaniusas, E., & Joseph, W. (2017). Numerical modeling of percutaneous auricular vagus nerve stimulation: a realistic 3D model to evaluate sensitivity of neural activation to electrode position. Medical & Biological Engineering & Computing, 55(10), 1763-1772. doi:10.1007/s11517-017-1629-7

Samoudi, A. M., Vermeeren, G., Tanghe, E., Van Holen, R., Martens, L., & Josephs, W. (2016). Numerically simulated exposure of children and adults to pulsed gradient fields in MRI. Journal of Magnetic Resonance Imaging, 44(5), 1360-1367. doi:10.1002/jmri.25257

Trujillo, M., Bon, J., José Rivera, M., Burdío, F., & Berjano, E. (2016). Computer modelling of an impedance-controlled pulsing protocol for RF tumour ablation with a cooled electrode. International Journal of Hyperthermia, 32(8), 931-939. doi:10.1080/02656736.2016.1190868

Ewertowska, E., Mercadal, B., Muñoz, V., Ivorra, A., Trujillo, M., & Berjano, E. (2017). Effect of applied voltage, duration and repetition frequency of RF pulses for pain relief on temperature spikes and electrical field: a computer modelling study. International Journal of Hyperthermia, 34(1), 112-121. doi:10.1080/02656736.2017.1323122

Zhang, B., Moser, M. A. J., Zhang, E. M., Luo, Y., & Zhang, W. (2016). A new approach to feedback control of radiofrequency ablation systems for large coagulation zones. International Journal of Hyperthermia, 33(4), 367-377. doi:10.1080/02656736.2016.1263365

Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488

López Molina, J. A., Rivera, M. J., & Berjano, E. (2017). Analytical transient-time solution for temperature in non perfused tissue during radiofrequency ablation. Applied Mathematical Modelling, 42, 618-635. doi:10.1016/j.apm.2016.10.044

Romero-Méndez, R., & Berjano, E. (2017). An Analytical Solution for Radiofrequency Ablation with a Cooled Cylindrical Electrode. Mathematical Problems in Engineering, 2017, 1-12. doi:10.1155/2017/9021616

Verhey, J., Nathan, N., Rienhoff, O., Kikinis, R., Rakebrandt, F., & D’Ambra, M. (2006). BioMedical Engineering OnLine, 5(1), 17. doi:10.1186/1475-925x-5-17

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem