- -

Modelado y control de turbinas eólicas marinas flotantes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado y control de turbinas eólicas marinas flotantes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tomás-Rodríguez, M. es_ES
dc.contributor.author Santos, M. es_ES
dc.date.accessioned 2019-09-24T07:14:28Z
dc.date.available 2019-09-24T07:14:28Z
dc.date.issued 2019-09-20
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/126281
dc.description.abstract [EN] This tutorial deals with the modeling and control of floating marine wind turbines. First, these offshore wind energy systems, located on the high seas, in deep waters are described; some modeling approaches are discussed. The power control of these turbines is presented in detail, explaining the different types of control that seek to maximize the energy. The issue of unstable dynamics that can appear in the floating platform due to the wind turbine rotor control is highlighted, something that other types of offshore and onshore turbines do not share. An example shows the reduction of vibrations by applying structural control strategies; results prove that a passive device that is complemented with a mechanism called inerter eliminates the oscillations of the floating turbine. The example here presented represents some preliminary results of the ongoing current research of the authors. es_ES
dc.description.abstract [ES] En este tutorial se aborda el tema del modelado y control de las turbinas eólicas marinas flotantes. En primer lugar se describen estos sistemas de extracción de energía eólica que están situados en alta mar, en aguas profundas, y se comentan algunas aproximaciones a su modelado. El control de potencia de estas turbinas es presentado con detalle, explicando los distintos tipos de control que buscan maximizar la obtención de energía. Se resalta el problema de la inducción de dinámicas inestables en la plataforma flotante debido al control del rotor del aerogenerador, una dificultad que no aparece en otros tipos de turbinas. La reducción de las vibraciones mediante estrategias de control estructural se ilustra con un ejemplo, usando un dispositivo pasivo que es complementado con un mecanismo denominado inerter, mostrando con resultados de simulación cómo se consiguen eliminar las oscilaciones de la turbina flotante. Este ejemplo está basado en resultados preliminares obtenidos en la investigación que llevan a cabo los autores de este tutorial. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista Iberoamericana de Automática e Informática.
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Modelado es_ES
dc.subject Control es_ES
dc.subject Aerogenerador es_ES
dc.subject Turbinas eólicas flotantes es_ES
dc.subject Energía marina es_ES
dc.subject Energía renovable es_ES
dc.subject Modelling es_ES
dc.subject Wind turbine es_ES
dc.subject Floating Offshore wind turbines es_ES
dc.subject Wind marine energy es_ES
dc.subject Renewable energy es_ES
dc.title Modelado y control de turbinas eólicas marinas flotantes es_ES
dc.title.alternative Modelling and control of floating offshore wind turbines es_ES
dc.type Artículo es_ES
dc.date.updated 2019-09-24T06:57:18Z
dc.identifier.doi 10.4995/riai.2019.11648
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Tomás-Rodríguez, M.; Santos, M. (2019). Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática. 16(4):381-390. https://doi.org/10.4995/riai.2019.11648 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.11648 es_ES
dc.description.upvformatpinicio 381 es_ES
dc.description.upvformatpfin 390 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 4
dc.identifier.eissn 1697-7920
dc.description.references Bianchi, F. D., De Battista, H., & Mantz, R. J. (2006). Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media. es_ES
dc.description.references Carter, D.J.T. (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17-33. https://doi.org/10.1016/0029-8018(82)90042-7 es_ES
dc.description.references García, E., Correcher, A., Quiles, E., Morant, F. 2016. Renewable energy resources of the marine environment and its control requirements. RIAI Revista Iberoamericana de Automática e Informática Industrial, 13(2):141-161. https://doi.org/10.1016/j.riai.2016.03.002 es_ES
dc.description.references González-Rodríguez, A.G., González-Rodríguez, A., Chacón, J.M., Castillo, F.J. 2017. Wide frequency vibration absorber based on a new adjustable-stiffness leaf spring. Revista Iberoamericana de Automática e Informática Industrial, 14(2), 163-173, doi: https://doi.org/10.1016/j.riai.2016.11.005 es_ES
dc.description.references Hu, Y., Wang, J., Chen, M.Z., Li, Z. and Sun, Y., 2018. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control. Engineering Structures, 177, pp.198-209. https://doi.org/10.1016/j.engstruct.2018.09.063 es_ES
dc.description.references Hywind Offshore Wind. Statoil (2019). http://www.offshorewind.biz/2014/07/09/statoil-signs-hywind-deal-with-aibel/ es_ES
dc.description.references Jin, X., Xie, S., He, J., Lin, Y., Wang, Y. and Wang, N., 2018. Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm. Ocean Engineering, 167, pp.130-141. https://doi.org/10.1016/j.oceaneng.2018.08.031 es_ES
dc.description.references Jonkman, J. M. 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine. No. NREL/TP-500-41958, National Renewable Energy Lab (NREL), Golden, University of Colorado. https://doi.org/10.2172/921803 es_ES
dc.description.references Jonkman, J. M. 2008. Influence of control on the pitch damping of a floating wind turbine. ASME Wind Energy Symposium, Reno, Nevada, Jan 7-10. https://doi.org/10.2514/6.2008-1306 es_ES
dc.description.references Jonkman, J., Matha, D. 2009. A quantitative comparison of the responses of three floating platform concepts. In: European Offshore Wind Conference And Exhibition. Stockholm (Sweden). (No. NREL/CP-500-46726). es_ES
dc.description.references Jose, A., Falzarano, J., Wang, H. (2018). A study of negative damping in floating wind turbines using coupled program FAST-SIMDYN. In ASME 2018 1st Int. Offshore Wind Technical Conf. (pp. V001T01A036-V001T01A036). American Society of Mechanical Engineers. https://doi.org/10.1115/IOWTC2018-1112 es_ES
dc.description.references Knudsen, T., Bak, T., Svenstrup, M. (2015). Survey of wind farm control-power and fatigue optimization. Wind Energy, 18(8), 1333-1351. https://doi.org/10.1002/we.1760 es_ES
dc.description.references Lackner, M.A., Rotea, M.A. 2011. Structural control of floating wind turbines. Mechatronics, 21(4), pp.704-719. https://doi.org/10.1016/j.mechatronics.2010.11.007 es_ES
dc.description.references Larsen, T.J., Hanson, T.D. 2007. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. In Journal of Physics: Conference Series (Vol. 75, No. 1, p. 012073). IOP Publishing. https://doi.org/10.1088/1742-6596/75/1/012073 es_ES
dc.description.references Menezes, E.J.N., Araújo, A.M. and da Silva, N.S.B. 2018. A review on wind turbine control and its associated methods. Journal of Cleaner Production, 174, pp.945-953. https://doi.org/10.1016/j.jclepro.2017.10.297 es_ES
dc.description.references Mikati, M., Santos, M., Armenta, C. (2013). Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renewable energy, 57, 587-593. https://doi.org/10.1016/j.renene.2013.02.018 es_ES
dc.description.references Pérez de la Portilla, M., López Piñeiro, A., Somolinos J.A., Morales, R. (2018) Dynamic modelling and control of a submerged device with hydrostatic actuators. Revista Iberoamericana de Automática e Informática Industrial, 15(1), pp. 12-23, 2018, https://doi.org/10.4995/riai.2017.8824 es_ES
dc.description.references Roddier, D., Cermelli, C., Aubault, A., & Peiffer, A. (2017). Summary and conclusions of the full life-cycle of the WindFloat FOWT prototype project. In ASME 2017 36th Int. Conf. on Ocean, Offshore and Arctic Engineering (pp. V009T12A048-V009T12A048). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2017-62561 es_ES
dc.description.references Smith, M.C. 2002. Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532 es_ES
dc.description.references Soong, T.T., Costantinou, M.C. (2014). Passive and active structural vibration control in civil engineering (Vol. 345). Springer. es_ES
dc.description.references Stewart, G. M., Lackner, M. A. 2014. The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads. Engineering Structures 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045 es_ES
dc.description.references Tomas-Rodríguez, M., Elsaghir, T., Hashi S., Santos, M. 2018. Análisis de vibraciones en turbinas marinas, XXXIX Jornadas de Automática, Badajoz, 5-7, Sept. es_ES
dc.description.references Wang, C.M., Utsunomiya, T., Wee, S.C., Choo, Y.S. 2010. Research on floating wind turbines: a literature survey. The IES Journal Part A: Civil & Structural Engineering, 3(4), pp.267-277. https://doi.org/10.1080/19373260.2010.517395 es_ES
dc.description.references Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy Conversion and Management, 158, 103-119. https://doi.org/10.1016/j.enconman.2017.12.061 es_ES
dc.description.references Yang, J., He, E.M. and Hu, Y.Q., 2019. Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform. Applied Ocean Research, 83, pp.21-29. https://doi.org/10.1016/j.apor.2018.08.021 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem