- -

Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernández-Vázquez, José Omar es_ES
dc.contributor.author Hernández-González, Salvador es_ES
dc.contributor.author Jiménez-García, José Alfredo es_ES
dc.contributor.author Hernández-Ripalda, Manuel Darío es_ES
dc.contributor.author Hernández-Vázquez, José Israel es_ES
dc.date.accessioned 2019-09-24T08:04:48Z
dc.date.available 2019-09-24T08:04:48Z
dc.date.issued 2019-09-20
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/126290
dc.description.abstract [EN] The Buffer Allocation Problem (BAP) is a problem of combinatorial NP-Hard optimization in the design of production lines. This consists of defining the allocation of storage places (buffers) within a production line, in order to maximize the efficiency of the process. The methods of optimization have been reported with greater success in recent years are metaheuristic techniques. In this work, a hybrid approach is proposed that uses the metaheuristic techniques of Genetic Algorithms (GA) and Simulated Annealing (SA), with the objective of determining the required buffers that minimize the average work in process (WIP) in open serial production lines M/M/1/K. The evaluation is carried out with an analytical method of decomposition. The results obtained demonstrate the computational efficiency of the proposed hybrid algorithm with respect to a simple SA or GA. es_ES
dc.description.abstract [ES] El problema de asignación del buffer (BAP, por sus siglas en inglés) es clasificado como un problema de optimización combinatorio NP-Duro en el diseño de las líneas de producción. Éste consiste en definir la asignación de lugares de almacenamiento (buffers) dentro de una línea de producción, con el fin de aumentar al máximo la eficiencia del proceso. Los métodos de optimización que han sido reportados con mayor éxito en los últimos años son las técnicas metaheurísticas. En este trabajo, se propone un enfoque híbrido que utiliza las técnicas metaheurísticas de: Algoritmos Genéticos (AG) y Recocido Simulado (RS), con el objetivo de determinar los buffers requeridos que minimicen el promedio de inventario en proceso (WIP, por sus siglas en inglés) en líneas de producción abiertas en serie M/M/1/K. La evaluación se realiza con un método analítico de descomposición. Los resultados obtenidos demuestran la eficiencia computacional del algoritmo híbrido propuesto con respecto a un RS o AG estándar. es_ES
dc.description.sponsorship Se agradece al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el financiamiento de esta investigación con número de registro CVU: 375571. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista Iberoamericana de Automática e Informática.
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Control de inventario es_ES
dc.subject Optimización y métodos computacionales es_ES
dc.subject BAP es_ES
dc.subject Metaheurísticas híbridas es_ES
dc.subject Líneas de producción es_ES
dc.subject Inventory control es_ES
dc.subject Optimization and computational methods es_ES
dc.subject Hybrid metaheuristics es_ES
dc.subject Production lines es_ES
dc.title Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie es_ES
dc.title.alternative Hybrid metaheuristic approach GA-SA for the buffer allocation problem that minimizes the work in process in open serial production lines es_ES
dc.type Artículo es_ES
dc.date.updated 2019-09-24T06:57:02Z
dc.identifier.doi 10.4995/riai.2019.10883
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//CVU-375571/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hernández-Vázquez, JO.; Hernández-González, S.; Jiménez-García, JA.; Hernández-Ripalda, MD.; Hernández-Vázquez, JI. (2019). Enfoque híbrido metaheurístico AG-RS para el problema de asignación del buffer que minimiza el inventario en proceso en líneas de producción abiertas en serie. Revista Iberoamericana de Automática e Informática. 16(4):447-458. https://doi.org/10.4995/riai.2019.10883 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.10883 es_ES
dc.description.upvformatpinicio 447 es_ES
dc.description.upvformatpfin 458 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 4
dc.identifier.eissn 1697-7920
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México
dc.description.references Amiri, M., & Mohtashami, A. (2011). Buffer allocation in unreliable production lines based on design of experiments, simulation, and genetic algorithm. International Journal of Advanced Manufacturing Technology, 62, 371-383. https://doi.org/10.1007/s00170-011-3802-8 es_ES
dc.description.references Ariyani, A. K., Mahmudy, W. F., & Anggodo, Y. P. (2018). Hybrid genetic algorithms and simulated annealing for multi-trip vehicle routing problem with time windows. International Journal of Electrical and Computer Engineering, 8(6), 4713-4723. https://doi.org/10.11591/ijece.v8i6.pp4713-4723 es_ES
dc.description.references Blum, C., Blesa Aguilera, M. J., Roli, A., & Sampels, M. (2008). Hybrid metaheuristics an emerging approach to optimization, Springer, Berlin. https://doi.org/10.1007/978-3-540-78295-7 es_ES
dc.description.references Costa, A., Alfieri, A., Matta, A., & Fichera, S. (2015). A parallel tabu search for solving the primal buffer allocation problem in serial production systems. Computers & Operations Research, 97-112. https://doi.org/10.1016/j.cor.2015.05.013 es_ES
dc.description.references Cruz, F. R., Kendall, G., While, L., Duarte, A. R., & Brito, N. L. (2012). Throughput maximization of queueing networks with simultaneous minimization of servicer rates and buffers. Mathematical Problems in Engineering, 1-19. https://doi.org/10.1155/2012/692593 es_ES
dc.description.references Curry, G., & Feldman, R. (2009). Manufacturing Systems Modeling and Analysis, Springer, Berlin. es_ES
dc.description.references Demir, L., Tunali, S., & Tursel Eliiyi, D. (2014). The state of the art on buffer allocation problem: a comprehensive survey. Journal of Intelligent Manufacturing, 25(3), 371-392. https://doi.org/10.1007/s10845-012-0687-9 es_ES
dc.description.references Demir, L., & Tunali, S. (2008). A new approach for optimal buffer allocation in unreliable production lines. Pcoceedings of 38th International Conference on Computers, (págs. 1962-1970). es_ES
dc.description.references Dolgui, A., Eremeev, A. V., & Sigaev, V. S. (2007). HBBA: hybrid algorithm for buffer allocation in tandem production lines. Journal of Intelligent Manufacturing, 18, 411-420. https://doi.org/10.1007/s10845-007-0030-z es_ES
dc.description.references Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning (Primera ed.), Addison-Wesley Professional, United States of America. es_ES
dc.description.references Gutiérrez Pulido, H., & De la Vara Salazar, R. (2012). Análisis y diseño de experimentos (Tercera ed.), McGraw-Hill, México. es_ES
dc.description.references Huilcapi, V., Lima, B., Blasco, X., & Herrero, J. M. (2018). Multi-objective optimization in modeling and control for rotary inverted pendulum. Revista Iberoamericana de Automática e Informática Industrial, 15(4), 363-373. https://doi.org/10.4995/riai.2018.8739 es_ES
dc.description.references Kose, S. Y., & Kilincci, O. (2015). Hybrid approach for buffer allocation in open serial production lines. Computers & Operations Research, 60, 67-78. https://doi.org/10.1016/j.cor.2015.01.009 es_ES
dc.description.references Kose, S. Y., & Kilincci, O. (2018). A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1435-6 es_ES
dc.description.references Liu, C., & Tu, F. S. (1994). Buffer allocation via the genetic algorithm. In: Proceedings of 33rd conference on decision and control, 609-610. es_ES
dc.description.references Mohtashami, A. (2014). A new hybrid method for buffer sizing and machine allocation in unreliable production and assembly lines with general distribution time-dependent parameters. International Journal of Advanced Manufacturing Technology, 74, 1577-1593. https://doi.org/10.1007/s00170-014-6098-7 es_ES
dc.description.references Nahas, N., & Nourelfath, M. (2018). Joint optimization of maintenance, buffers and machines in manufacturing lines. Engineering Optimization, 50(1), 37-54. https://doi.org/10.1080/0305215X.2017.1299716 es_ES
dc.description.references Nahas, N., Nourelfath, M., & Ait-Kadi, D. (2009). Selecting machines and buffers in unreliable series-parallel production lines. International Journal of Production Research, 47(14), 3741-3774. https://doi.org/10.1080/00207540701806883 es_ES
dc.description.references Nahas, N., Nourelfath, M., & Gendreau, M. (2014). Selecting machines and buffers in unreliable assembly/disassembly manufacturing networks. International Journal of Production Economics, 154, 113-126. https://doi.org/10.1016/j.ijpe.2014.04.011 es_ES
dc.description.references Narasimhamu, K. L., Reddy, V. V., & Rao, C. (2014). Optimal buffer allocation in tandem closed queuing network with single server using PSO. Procedia Materials Science, 5, 2084-2089. https://doi.org/10.1016/j.mspro.2014.07.543 es_ES
dc.description.references Narasimhamu, K. L., Reddy, V. V., & Rao, C. (2015). Optimization of buffer allocation in manufacturing system using particle swarm optimization. International Review on Modelling and Simulations, 8(2). https://doi.org/10.15866/iremos.v8i2.5666 es_ES
dc.description.references Ortiz-Quisbert, M. E., Duarte-Mermoud, M. A., Milla, F., & Castro-Linares, R. (2016). Fractional adaptive control optimized by genetic algorithms, applied to automatic voltage regulators. Revista Iberoamericana de Automática e Informática industrial, 13(4), 403-409. https://doi.org/10.1016/j.riai.2016.07.004 es_ES
dc.description.references Papadopoulos, C. T., O'Kelly, M. E., Vidalis, M. J., & Spinellis, D. (2009). Analysis and design of discrete part production lines. New York: Springer. https://doi.org/10.1007/978-0-387-89494-2_2 es_ES
dc.description.references Papadopoulos, H. T., & Vidalis, M. I. (2001). Minimizing WIP inventory in reliable production lines. International Journal of Production Economics, 70, 185-197. https://doi.org/10.1016/S0925-5273(00)00056-6 es_ES
dc.description.references Rodríguez-Blanco, T., Sarabia, D., & De Prada, C. (2018). Real-time optimization using the modifier adaptation methodology. Revista Iberoamericana de Automática e Informática industrial, 15(2), 133-144. https://doi.org/10.4995/riai.2017.8846 es_ES
dc.description.references Shi, L., & Men, S. (2003). Optimal buffer allocation in production lines. IIE Transactions, 35, 1-10. https://doi.org/10.1080/07408170304431 es_ES
dc.description.references Shortle, J., Thompson, J., Gross, D., & Harris, C. (2018). Fundamentals of Queueing Theory (Fifth ed.), Wiley, United States of America. https://doi.org/10.1002/9781119453765 es_ES
dc.description.references Spinellis, D. D., & Papadopoulos, C. T. (2000a). A simulated annealing approach for buffer allocation in reliable production lines. Annals of Operations Research, 93, 373-384. https://doi.org/10.1023/A:1018984125703 es_ES
dc.description.references Spinellis, D. D., & Papadopoulos, C. T. (2000b). Stochastic algorithms for buffer allocation in reliable production lines. Mathematical Problems in Engineering, 5, 441-458. https://doi.org/10.1155/S1024123X99001180 es_ES
dc.description.references Spinellis, D., Papadopoulos, C., & Smith, J. M. (2000). Large production line optimisation using simulated annealing. International Journal of Production Research, 38(3), 509-541. https://doi.org/10.1080/002075400189284 es_ES
dc.description.references Su, C., Shi, Y., & Dou, J. (2017). Multi-objective optimization of buffer allocation for remanufacturing system based on TS-NSGAII hybrid algorithm. Journal of Cleaner Production, 166, 756-770. https://doi.org/10.1016/j.jclepro.2017.08.064 es_ES
dc.description.references Takahashi, Y., Miyahara, H., & Hasegawa, T. (1980). An approximation method for open restricted queueing networks. Operations Research, 28(3), 594-602. https://doi.org/10.1287/opre.28.3.594 es_ES
dc.description.references Vergara, H. A., & Kim, D. S. (2009). A new method for the placement of buffers in serial production lines. International Journal of Production Research, 47(16), 4437-445. https://doi.org/10.1080/00207540801939022 es_ES
dc.description.references Wei, H., Li, S., Jiang, H., Hu, J., & Hu, J. (2018). Hybrid genetic simulated annealing algorithm for improved flow shop scheduling with makespan criterion. Applied Sciences, 8(2621), 1-20. https://doi.org/10.3390/app8122621 es_ES
dc.description.references Weiss, S., Schwarz, J. A., & Stolletz, R. (2018). The buffer allocation problem in production lines: Formulations, solution methods, and instances. IISE Transactions. https://doi.org/10.1080/24725854.2018.1442031 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem