- -

Modelo de predicción de demanda de energía eléctrica mediante técnicas Set-Membership

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelo de predicción de demanda de energía eléctrica mediante técnicas Set-Membership

Mostrar el registro completo del ítem

Diaz, J.; Vuelvas, J.; Ruiz, F.; Patiño, D. (2019). Modelo de predicción de demanda de energía eléctrica mediante técnicas Set-Membership. Revista Iberoamericana de Automática e Informática. 16(4):467-479. https://doi.org/10.4995/riai.2019.9819

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126298

Ficheros en el ítem

Metadatos del ítem

Título: Modelo de predicción de demanda de energía eléctrica mediante técnicas Set-Membership
Otro titulo: A Set-Membership approach to short-term electric load forecasting
Autor: Diaz, Jimena Vuelvas, Jose Ruiz, Fredy Patiño, Diego
Fecha difusión:
Resumen:
[EN] This work presents a model for the short-term forecast of electric load, based on Set-Membership techniques. The model is formed by a periodic component and an adaptive non-linear autoregressive component. The ...[+]


[ES] En este artículo se propone un modelo para la predicción de demanda de energía eléctrica a corto plazo empleando técnicas de estimación Set Membership. El modelo está compuesto por una componente periódica y una ...[+]
Palabras clave: Gestión y demanda energética , Filtrado adaptativo , Identificación de sistemas , Electric load management , Adaptive filtering , System identification
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática.. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.9819
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2019.9819
Agradecimientos:
Este trabajo fue financiado por el Fondo de Ciencia, Tecnología e Innovación del Sistema General de Regalías (SGR),Gobernación de Cundinamarca (Colombia), convenio especial de cooperación No. SCTeI 016 de 2015. El ...[+]
Tipo: Artículo

References

Acosta, A., González, A., Zamarreno, J., Álvarez, V., 2011. Modelo para la predicción energética de una instalación hotelera. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (4), 309 - 322. https://doi.org/10.1016/j.riai.2011.09.001

Alam, A., Upadhyay, S., Murthy, C. H., Reddy, M. J. B., Jana, K. C., Mohanta, D. K., 2012. Reliability evaluation of solar photovoltaic microgrid. In: Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on. pp. 490-495. https://doi.org/10.1109/EEEIC.2012.6221427

Alfares, H. K., Nazeeruddin, M., 2002. Electric load forecasting: Literature survey and classification of methods. International Journal of Systems Science 33 (1), 23-34. https://doi.org/10.1080/00207720110067421 [+]
Acosta, A., González, A., Zamarreno, J., Álvarez, V., 2011. Modelo para la predicción energética de una instalación hotelera. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (4), 309 - 322. https://doi.org/10.1016/j.riai.2011.09.001

Alam, A., Upadhyay, S., Murthy, C. H., Reddy, M. J. B., Jana, K. C., Mohanta, D. K., 2012. Reliability evaluation of solar photovoltaic microgrid. In: Environment and Electrical Engineering (EEEIC), 2012 11th International Conference on. pp. 490-495. https://doi.org/10.1109/EEEIC.2012.6221427

Alfares, H. K., Nazeeruddin, M., 2002. Electric load forecasting: Literature survey and classification of methods. International Journal of Systems Science 33 (1), 23-34. https://doi.org/10.1080/00207720110067421

Bordons, C., Torres, F. G., Valverde, L., 2015. Gestión Óptima de la energía en microrredes con generación renovable. Revista Iberoamericana de Automática e Informática Industrial RIAI 12 (2), 117 - 132. https://doi.org/10.1016/j.riai.2015.03.001

Castano, J., Ruiz, F., 2013. Set membership identification of an excimer lamp for fast simulation. Control Engineering Practice 21 (1), 96 - 104. https://doi.org/10.1016/j.conengprac.2012.09.013

Dang, H. Q., 2014. Time series outlier detection in spacecraft data. Ph.D. thesis, Knowledge Engineering Group, TU Darmstadt.

Dwijayanti, S., Hagan, M., 2013. Short Term Load Forecasting Using a Neural Network Based Time Series Approach. 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation (1), 17-22. https://doi.org/10.1109/AIMS.2013.11

Hanmandlu, M., Chauhan, B. K., 2011. Load forecasting using hybrid models. IEEE Transactions on Power Systems 26 (1), 20-29. https://doi.org/10.1109/TPWRS.2010.2048585

He, Y., Xu, Q.,Wan, J., Yang, S., 2016. Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function. Energy 114, 498-512. https://doi.org/10.1016/j.energy.2016.08.023

Hu, Z., Bao, Y., Xiong, T., Chiong, R., 2015. Hybrid filter-wrapper feature selection for short-term load forecasting. Engineering Applications of Artificial Intelligence 40, 17-27. https://doi.org/10.1016/j.engappai.2014.12.014

Kapgate, D., Mohod, S., 2014. Hybrid wavenet model for short term electrical load forecasting. In: 2014 Conference on IT in Business, Industry and Government (CSIBIG). No. 1. pp. 1-8. https://doi.org/10.1109/CSIBIG.2014.7057008

Lopes, J. P., Hatziargyriou, N., Mutale, J., Djapic, P., Jenkins, N., 2007. Integrating distributed generation into electric power systems: A review of drivers, challenges and opportunities. Electric Power Systems Research 77 (9), 1189 - 1203. https://doi.org/10.1016/j.epsr.2006.08.016

Mikati, M., Santos, M., Armenta, C., 2012. Modelado y simulación de un sistema conjunto de energía solar y eólica para analizar su dependencia de la red eléctrica. Revista Iberoamericana de Automática e Informática Industrial RIAI 9 (3), 267 - 281. https://doi.org/10.1016/j.riai.2012.05.010

Milanese, M., Novara, C., 2004. Set Membership identification of nonlinear systems. Automatica 40 (6), 957-975. https://doi.org/10.1016/j.automatica.2004.02.002

Milanese, M., Novara, C., Nov 2005. Set membership prediction of nonlinear time series. IEEE Transactions on Automatic Control 50 (11), 1655-1669. https://doi.org/10.1109/TAC.2005.858693

Nose-Filho, K., Lotufo, A. D. P., Minussi, C. R., 2011b. Short-Term Multinodal Load Forecasting Using a Modified General Regression Neural Network. IEEE Transactions on Power Delivery 26 (4), 2862-2869. https://doi.org/10.1109/TPWRD.2011.2166566

Oliveira, M. O., Marzec, D. P., Bordin, G., Bretas, a. S., Bernardon, D., 2011. Climate change e_ect on very short-term electric load forecasting. 2011 IEEE Trondheim PowerTech 190, 1-7. https://doi.org/10.1109/PTC.2011.6019249

Parkpoom, S., Harrison, G., Bialek, J., 2004. Climate change impacts on electricity demand. 39th International Universities Power Engineering Conference, 2004. UPEC 2004. 3 (Table I), 1342-1346

Sadaei, H. J., Enayatifar, R., Abdullah, A. H., Gani, A., 2014. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. International Journal of Electrical Power & Energy Systems 62 (from 2005), 118-129. https://doi.org/10.1016/j.ijepes.2014.04.026

Singh, N. K., Singh, A. K., Tripathy, M., 2015. A comparative study of BPNN, RBFNN and ELMAN neural network for short-term electric load forecasting: A case study of Delhi region. 9th International Conference on Industrial and Information Systems, ICIIS 2014. https://doi.org/10.1109/ICIINFS.2014.7036502

Ueckerdt, F., Brecha, R., Luderer, G., 2015. Analyzing major challenges of wind and solar variability in power systems. Renewable Energy 81, 1 - 10. https://doi.org/10.1016/j.renene.2015.03.002

Yalcinoz, T., Eminoglu, U., 2005. Short term and medium term power distribution load forecasting by neural networks. Energy Conversion and Management 46 (9-10), 1393-1405. https://doi.org/10.1016/j.enconman.2004.07.005

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem