- -

Sistema híbrido inteligente para la predicción de la tensión de una pila de combustible basada en hidrógeno

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sistema híbrido inteligente para la predicción de la tensión de una pila de combustible basada en hidrógeno

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casteleiro-Roca, José-Luis es_ES
dc.contributor.author Barragán, Antonio Javier es_ES
dc.contributor.author Segura, Francisca es_ES
dc.contributor.author Calvo-Rolle, José Luis es_ES
dc.contributor.author Andújar, José Manuel es_ES
dc.date.accessioned 2019-09-24T09:47:53Z
dc.date.available 2019-09-24T09:47:53Z
dc.date.issued 2019-09-20
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/126301
dc.description.abstract [EN] Due to some reasons like sustainability and energy strategy, there is a clear trend using new ways to obtain energy, more efficient and, usually, renewables. In addition, with other dierent objectives, many researchs are being carried out on energy storage systems; one of the most promising, in terms of capacity and mobility, is hydrogen-based. In the present work a model is obtained to predict the dynamic behavior of a hydrogen fuel cell, which will improve its control. The variables used in this research have been extracted from a test bench, where a fuel cell is monitored under several load conditions with a programmable load connected to its output. To perform this model, a hybrid intelligent model was chosen. This kind of models use clustering techniques to divide the data set and, after that, intelligent regression algorithm with artificial neural networks are used for each group. The proposal has been tested with two validation data set, obtaining highly satisfactory results. es_ES
dc.description.abstract [ES] Por razones de sostenibilidad y estrategia energética, entre otras, existe en la actualidad una tendencia clara hacia el uso de nuevas formas de obtención, almacenamiento y gestión de energía, más eficientes y con un carácter eminentemente sostenible. Con este fin, se está investigando sobre sistemas de almacenamiento de energía; de los que uno de los más prometedores, en lo que a capacidad y movilidad se refiere, es el basado en hidrógeno. En el presente trabajo se obtiene un modelo para predecir el comportamiento dinámico de una pila de combustible alimentada por hidrógeno, lo cual permitirá mejorar su control entre otras aplicaciones. Las variables usadas en esta investigación se han extraído de un banco de pruebas real, donde se monitoriza una pila de combustible mientras se producen variaciones en una carga programable conectada a la salida de la misma. Para realizar este modelado se opta por estudiar la implementación de un modelo híbrido basado en técnicas de agrupamiento y, posteriormente, técnicas inteligentes de regresión con redes neuronales artificiales sobre cada uno de los grupos. La propuesta se ha probado con dos conjuntos de datos de validación, consiguiendo resultados altamente satisfactorios. es_ES
dc.description.sponsorship Los autores de este trabajo quieren agradecer el soporte en materia de financiación del Ministerio de Economía, Industria y Competitividad del Gobierno de España a través del proyecto H2SMART-μGRID (DPI2017-85540-R). es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Revista Iberoamericana de Automática e Informática.
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Almacenamiento de energía es_ES
dc.subject Pila de combusible es_ES
dc.subject Hidrógeno es_ES
dc.subject K-Means es_ES
dc.subject ANN es_ES
dc.subject Energy storage es_ES
dc.subject Fuel Cell es_ES
dc.subject Hydrogen es_ES
dc.title Sistema híbrido inteligente para la predicción de la tensión de una pila de combustible basada en hidrógeno es_ES
dc.title.alternative Intelligent hybrid system for the prediction of the voltage-current characteristic curve of a hydrogen-based fuel cell es_ES
dc.type Artículo es_ES
dc.date.updated 2019-09-24T06:57:52Z
dc.identifier.doi 10.4995/riai.2019.10986
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-85540-R/ES/CONFIGURACION Y GESTION DE UNA MICRO-RED RENOVABLE INTELIGENTE HIBRIDADA CON TECNOLOGIAS DE HIDROGENO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Casteleiro-Roca, J.; Barragán, AJ.; Segura, F.; Calvo-Rolle, JL.; Andújar, JM. (2019). Sistema híbrido inteligente para la predicción de la tensión de una pila de combustible basada en hidrógeno. Revista Iberoamericana de Automática e Informática. 16(4):492-501. https://doi.org/10.4995/riai.2019.10986 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.10986 es_ES
dc.description.upvformatpinicio 492 es_ES
dc.description.upvformatpfin 501 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 16
dc.description.issue 4
dc.identifier.eissn 1697-7920
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Alaiz Moretón, H., Calvo Rolle, J., García, I., Alonso Alvarez, A., 2011. Formalization and practical implementation of a conceptual model for pid controller tuning. Asian Journal of Control 13 (6), 773-784. https://doi.org/10.1002/asjc.264 es_ES
dc.description.references Alique, A., Haber, R. E., Haber, R. H., Ros, S., Gonzalez, C., 2000. A neural network-based model for the prediction of cutting force in milling process. A progress study on a real case. In: Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on. IEEE, pp. 121-125. https://doi.org/10.1109/ISIC.2000.882910 es_ES
dc.description.references Amphlett, J. C., Baumert, R. M., Mann, R. F., Peppley, B. A., Roberge, P. R., Harris, T. J., Jan. 1995. Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell i. Mechanistic model development. Journal of the Electrochemical Society 142 (1), 1-8. https://doi.org/10.1149/1.2043866 es_ES
dc.description.references Amphlett, J. C., Mann, R. F., Peppley, B. A., Roberge, P. R., Rodrigues, A., Feb. 1996. A model predicting transient responses of proton exchange membrane fuel cells. Journal of Power Sources 61 (1-2), 183-188, cited By (since 1996) 216. https://doi.org/10.1016/S0378-7753(96)02360-9 es_ES
dc.description.references Andújar, J. M., Segura, F., Dec. 2009. Fuel cells: History and updating. A walk along two centuries. Renewable and Sustainable Energy Reviews 13 (9), 2309-2322. https://doi.org/10.1016/j.rser.2009.03.015 es_ES
dc.description.references Andújar, J. M., Segura, F., Durán, E., Rentería, L. A., Nov. 2011. Optimal interface based on power electronics in distributed generation systems for fuel cells. Renewable Energy 36 (11), 2759-2770. https://doi.org/10.1016/j.renene.2011.04.005 es_ES
dc.description.references Andújar, J. M., Segura, F., Vasallo, M. J., 2008. A suitable model plant for control of the set fuel cell-DC/DC converter. Renewable Energy 33 (4), 813-826. https://doi.org/10.1016/j.renene.2007.04.013 es_ES
dc.description.references Ballard, 2009. FCgenTM-1020ACS/FCvelocityTM-1020ACS Fuel Cell Stack. Ballard Product Manual and Integration Guide. Document Number MAN5100192-0GS. es_ES
dc.description.references Ballard, 2018. FCgen1020-ACS fuel cell from Ballard Power Systems. URL: http://www.ballard.com/docs/default-source/backup-power-documents/fcgen-1020acs.pdf es_ES
dc.description.references Barragán, A. J., Al-Hadithi, B. M., Andújar, J. M., Jiménez, A., 2015. Formal methodology for analyzing the dynamic behavior of nonlinear systems using fuzzy logic. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 12 (4), 434-445. https://doi.org/10.1016/j.riai.2015.09.005 es_ES
dc.description.references Barragán, A. J., Al-Hadithi, B. M., Jiménez, A., Andújar, J. M., 2014. A general methodology for online TS fuzzy modeling by the extended kalman filter. Applied Soft Computing 18 (0), 277-289. https://doi.org/10.1016/j.asoc.2013.09.005 es_ES
dc.description.references Baruque, B., Porras, S., Jove, E., Calvo-Rolle, J. L., 2019. Geothermal heat exchanger energy prediction based on time series and monitoring sensors optimization. Energy 171, 49-60. https://doi.org/10.1016/j.energy.2018.12.207 es_ES
dc.description.references Bertoluzzo, M., Buja, G., Aug. 2011. Development of electric propulsion systems for light electric vehicles. Industrial Informatics, IEEE Transactions on 7 (3), 428-435. https://doi.org/10.1109/TII.2011.2158840 es_ES
dc.description.references Calvo-Rolle, J. L., Casteleiro-Roca, J. L., Quintián, H., del Carmen Meizoso-Lopez, M., 2013. A hybrid intelligent system for PID controller using in a steel rolling process. Expert Systems with Applications 40 (13), 5188-5196. https://doi.org/10.1016/j.eswa.2013.03.013 es_ES
dc.description.references Calvo-Rolle, J. L., Fontenla-Romero, O., Pérez-Sánchez, B., Guijarro-Berdinas, B., 2014. Adaptive inverse control using an online learning algorithm for neural networks. Informatica 25 (3), 401-414. https://doi.org/10.15388/Informatica.2014.20 es_ES
dc.description.references Calvo-Rolle, J. L., Quintian-Pardo, H., Corchado, E., del Carmen Meizoso-López, M., García, R. F., 2015. Simplified method based on an intelligent model to obtain the extinction angle of the current for a single-phase half wave controlled rectifier with resistive and inductive load. Journal of Applied Logic 13 (1), 37-47. https://doi.org/10.1016/j.jal.2014.11.010 es_ES
dc.description.references Casteleiro-Roca, J.-L., Barragan, A. J., Segura, F., Calvo-Rolle, J. L., Andújar, J. M., 2019. Fuel cell output current prediction with a hybrid intelligent system. Complexity 2019. es_ES
dc.description.references Casteleiro-Roca, J. L., Calvo-Rolle, J. L., Meizoso-López, M.-C., Piñón-Pazos, A., Rodríguez-Gómez, B. A., 2015. Bio-inspired model of ground temperature behavior on the horizontal geothermal exchanger of an installation based on a heat pump. Neurocomputing 150, 90-98. https://doi.org/10.1016/j.neucom.2014.02.075 es_ES
dc.description.references Casteleiro-Roca, J.-L., Jove, E., Gonzalez-Cava, J. M., Pérez, J. A. M., Calvo- Rolle, J. L., Alvarez, F. B., 2018. Hybrid model for the ANI index prediction using remifentanil drug and EMG signal. Neural Computing and Applications, 1-10. https://doi.org/10.1007/s00521-018-3605-z es_ES
dc.description.references Casteleiro-Roca, J.-L., Jove, E., Sánchez-Lasheras, F., Méndez-Pérez, J.-A., Calvo-Rolle, J.-L., de Cos Juez, F. J., 2017. Power cell SOC modelling for intelligent virtual sensor implementation. Journal of Sensors 2017. https://doi.org/10.1155/2017/9640546 es_ES
dc.description.references De las Heras, A., Vivas, F., Segura, F., Andújar, J., 2018a. From the cell to the stack. a chronological walk through the techniques to manufacture the pefcs core. Renewable and Sustainable Energy Reviews 96, 29-45. https://doi.org/10.1016/j.rser.2018.07.036 es_ES
dc.description.references De las Heras, A., Vivas, F., Segura, F., Redondo, M., Andújar, J., 2018b. Aircooled fuel cells: Keys to design and build the oxidant/cooling system. Renewable Energy 125, 1-20. https://doi.org/10.1016/j.renene.2018.02.077 es_ES
dc.description.references del Brío, B., Molina, A., 2006. Redes neuronales y sistemas borrosos. Ra-Ma. es_ES
dc.description.references Famouri, P., Gemmen, R., Jul. 2003. Electrochemical circuit model of a PEM fuel cell. In: Power Engineering Society General Meeting, 2003, IEEE. Vol. 3. pp. 1436-1440. https://doi.org/10.1109/PES.2003.1267364 es_ES
dc.description.references Fontanet, J. G. G., Cervantes, A. L., Ortiz, I. B., 2016. Alternatives of control for a furuta's pendulum. Revista Iberoamericana de Autom'atica e Informática Industrial RIAI 13 (4), 410 - 420, alternativas de control para un Péndulo de Furuta. https://doi.org/10.1016/j.riai.2016.05.008 es_ES
dc.description.references Galipienso, M., Quevedo, M., Pardo, O., Ruiz, F., Ortega, M., 2003. Inteligencia artificial. Modelos, técnicas y áreas de aplicación. Editorial Paraninfo. es_ES
dc.description.references García, R. F., Rolle, J. L. C., Castelo, J. P., Gomez, M. R., 2014. On the monitoring task of solar thermal fluid transfer systems using NN based models and rule based techniques. Engineering Applications of Artificial Intelligence 27 (0), 129-136. https://doi.org/10.1016/j.engappai.2013.06.011 es_ES
dc.description.references García, R. F., Rolle, J. L. C., Gomez, M. R., Catoira, A. D., 2013. Expert condition monitoring on hydrostatic self-levitating bearings. Expert Systems with Applications 40 (8), 2975-2984. https://doi.org/10.1016/j.eswa.2012.12.013 es_ES
dc.description.references Ghanghermeh, A., Roshan, G., Orosa, J. A., Calvo-Rolle, J. L., Costa, A. M., 2013. New climatic indicators for improving urban sprawl: A case study of tehran city. Entropy 15 (3), 999-1013. https://doi.org/10.3390/e15030999 es_ES
dc.description.references Gordillo, F., Aracil, J., Alamo, T., Jul. 1997. Determining limit cycles in fuzzy control systems. In: IEEE International Conference on Fuzzy Systems. Vol. 1. pp. 193-198. https://doi.org/10.1109/FUZZY.1997.616367 es_ES
dc.description.references Harston, A. M. C., Pap, R., 2014. Handbook of Neural Computing Applications. Elsevier Science. es_ES
dc.description.references Hilera Gonzalez, J. R., Martínez Hernando, V. J., 2000. Redes neuronales artificiales: fundamentos, modelos y aplicaciones. Ra-Ma. es_ES
dc.description.references Hou, Y., Yang, Z., Fang, X., 2011. An experimental study on the dynamic process of PEM fuel cell stack voltage. Renewable Energy 36 (1), 325-329. https://doi.org/10.1016/j.renene.2010.06.046 es_ES
dc.description.references Irigoyen, E., Miñano, G., 2013. A narx neural network model for enhancing cardiovascular rehabilitation therapies. Neurocomputing 109, 9 - 15, new trends on Soft Computing Models in Industrial and Environmental Applications. https://doi.org/10.1016/j.neucom.2012.07.031 es_ES
dc.description.references Jove, E., Antonio Lopez-Vazquez, J., Isabel Fernandez-Ibanez, M., Casteleiro-Roca, J.-L., Luis Calvo-Rolle, J., 2018a. Hybrid intelligent system to predict the individual academic performance of engineering students. INTERNATIONAL JOURNAL OF ENGINEERING EDUCATION 34 (3), 895-904. es_ES
dc.description.references Jove, E., Blanco-Rodríguez, P., Casteleiro-Roca, J. L., Moreno-Arboleda, J., Lopez-V ázquez, J. A., de Cos Juez, F. J., Calvo-Rolle, J. L., 2018b. Attempts prediction by missing data imputation in engineering degree. In: International Joint Conference SOCO'17-CISIS'17-ICEUTE'17 Leon, Spain, September 6-8, 2017, Proceeding. Springer International Publishing, Cham, pp. 167-176. es_ES
dc.description.references Jove, E., Gonzalez-Cava, J. M., Casteleiro-Roca, J.-L., Méndez-Pérez, J.-A., Antonio Reboso-Morales, J., Javier Pérez-Castelo, F., Javier de Cos Juez, F., Luis Calvo-Rolle, J., 2018b. Modelling the hypnotic patient response in general anaesthesia using intelligent models. Logic Journal of the IGPL 00(0). https://doi.org/10.1093/jigpal/jzy032 es_ES
dc.description.references Kim, J., Lee, S.-M., Srinivasan, S., Chamberlin, C. E., Aug. 1995. Modeling of proton exchange membrane fuel cell performance with an empirical equation. Journal of the Electrochemical Society 142 (8), 2670-2674. https://doi.org/10.1149/1.2050072 es_ES
dc.description.references Kirubakaran, A., Jain, S., Nema, R., Dec. 2009. A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews 13 (9), 2430-2440. https://doi.org/10.1016/j.rser.2009.04.004 es_ES
dc.description.references Li, X., Deng, Z.-H., Wei, D., Xu, C.-S., Cao, G.-Y., 2011. Parameter optimization of thermal-model-oriented control law for pem fuel cell stack via novel genetic algorithm. Energy Conversion and Management 52 (11), 3290-3300. https://doi.org/10.1016/j.enconman.2011.05.012 es_ES
dc.description.references López, R., Fernández, J., 2008. Las Redes Neuronales Artificiales. Netbiblo. es_ES
dc.description.references López-Baldán, M. J., García-Cerezo, A., Cejudo, J. M., Romero, A., Apr. 2002. Fuzzy modeling of a thermal solar plant. International Journal of Intelligent Systems 17 (4), 369-379. https://doi.org/10.1002/int.10026 es_ES
dc.description.references Machón-González, I., López-García, H., Calvo-Rolle, J. L., 2010. A hybrid batch som-ng algorithm. In: Neural Networks (IJCNN), The 2010 International Joint Conference on. pp. 1-5. https://doi.org/10.1109/IJCNN.2010.5596812 es_ES
dc.description.references MacQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics. pp. 281-297. es_ES
dc.description.references Márquez, J. M. A., Piña, A. J. B., Arias, M. E. G., 2009. A general and formal methodology for designing stable nonlinear fuzzy control systems. IEEE Transactions on Fuzzy Systems 17 (5), 1081-1091. https://doi.org/10.1109/TFUZZ.2009.2021984 es_ES
dc.description.references Mehta, V., Cooper, J., 2003. Review and analysis of pem fuel cell design and manufacturing. Journal of Power Sources 114 (1), 32-53. https://doi.org/10.1016/S0378-7753(02)00542-6 es_ES
dc.description.references Moody, J., Darken, C., 6 1989. Fast learning in networks of locally-tuned processing units. Neural Computation 1 (2), 281-294. https://doi.org/10.1162/neco.1989.1.2.281 es_ES
dc.description.references Moreira, M. V., da Silva, G. E., Jul. 2009. A practical model for evaluating the performance of proton exchange membrane fuel cells. Renewable Energy 34 (7), 1734-1741. https://doi.org/10.1016/j.renene.2009.01.002 es_ES
dc.description.references Orallo, J., Quintana, M., Ramírez, C., 2004. Introducción a la miner'ıa de datos. Editorial Alhambra S.A. es_ES
dc.description.references Paska, J., Biczel, P., Kłos, M., Nov. 2009. Hybrid power systems - an efective way of utilising primary energy sources. Renewable Energy 34 (11), 2414- 2421. https://doi.org/10.1016/j.renene.2009.02.018 es_ES
dc.description.references Quintián, H., Calvo-Rolle, J. L., Corchado, E., 2014. A hybrid regression system based on local models for solar energy prediction. Informatica 25 (2), 265-282. https://doi.org/10.15388/Informatica.2014.14 es_ES
dc.description.references Quintian Pardo, H., Calvo Rolle, J. L., Fontenla Romero, O., 2012. Application of a low cost commercial robot in tasks of tracking of objects. Dyna 79 (175), 24-33. es_ES
dc.description.references Ralph, T., Hards, G., Keating, J., Campbell, S., Wilkinson, D., Davis, M., St-Pierre, J., Johnson, M., 1997. Low cost electrodes for proton exchange membrane fuel cells: Performance in single cells and ballard stacks. Journal of the Electrochemical Society 144 (11), 3845-3857. https://doi.org/10.1149/1.1838101 es_ES
dc.description.references Rolle, J., Gonzalez, I., Garcia, H., 2011. Neuro-robust controller for non-linear systems. Dyna 86 (3), 308-317. https://doi.org/10.6036/3949 es_ES
dc.description.references Ross, D., Jul. 2003. Power struggle [power supplies for portable equipment]. IEE Review 49 (7), 34-38. https://doi.org/10.1049/ir:20030705 es_ES
dc.description.references Segura, F., Andújar, J. M., Durán, E., april 2011. Analog current control techniques for power control in PEM fuel-cell hybrid systems: A critical review and a practical application. IEEE Transactions on Industrial Electronics 58 (4), 1171-1184. https://doi.org/10.1109/TIE.2010.2049710 es_ES
dc.description.references Segura, F., Andújar, J., 2015a. Modular pem fuel cell scada & simulator system. Resources 4 (3), 692-712. https://doi.org/10.3390/resources4030692 es_ES
dc.description.references Segura, F., Andújar, J., 2015b. Step by step development of a real fuel cell system. Design, implementation, control and monitoring. International Journal of Hydrogen Energy 40 (15), 5496-5508. https://doi.org/10.1016/j.ijhydene.2015.01.178 es_ES
dc.description.references Segura, F., Bartolucci, V., Andújar, J., 2017. Hardware/software data acquisition system for real time cell temperature monitoring in air-cooled polymer electrolyte fuel cells. Sensors (Switzerland) 17 (7). https://doi.org/10.3390/s17071600 es_ES
dc.description.references Van Bussel, H., Koene, F., Mallant, R. K., Mar. 1998. Dynamic model of solid polymer fuel cell water management. Journal of Power Sources 71 (1-2), 218-222. https://doi.org/10.1016/S0378-7753(97)02744-4 es_ES
dc.description.references Viñuela, P., León, I., 2004. Redes de neuronas artificiales: un enfoque práctico. Pearson Educaci'on - Prentice Hall. es_ES
dc.description.references Vivas, F., De las Heras, A., Segura, F., And'ujar, J., 2018. A review of energy management strategies for renewable hybrid energy systems with hydrogen backup. Renewable and Sustainable Energy Reviews 82, 126-155. https://doi.org/10.1016/j.rser.2017.09.014 es_ES
dc.description.references Ziogou, C., Voutetakis, S., Papadopoulou, S., Georgiadis, M., 2011. Modeling, simulation and experimental validation of a pem fuel cell system. Computers and Chemical Engineering 35 (9), 1886-1900. https://doi.org/10.1016/j.compchemeng.2011.03.013 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem