Mostrar el registro sencillo del ítem
dc.contributor.author | Garcia-Campo, M.J. | es_ES |
dc.contributor.author | Quiles-Carrillo, Luis | es_ES |
dc.contributor.author | Sanchez-Nacher, Lourdes | es_ES |
dc.contributor.author | Balart, Rafael | es_ES |
dc.contributor.author | Montanes, Nestor | es_ES |
dc.date.accessioned | 2019-09-27T10:40:12Z | |
dc.date.available | 2019-09-27T10:40:12Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 0170-0839 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/126495 | |
dc.description.abstract | [EN] This work reports the development of poly(lactic acid) (PLA) formulations with improved toughness by ternary blends with poly(3-hydroxybutyrate) (PHB) and two different flexible polyesters derived from succinic acid, namely poly(butylene succinate) (PBS) and a copolymer, poly(butylene succinate-co-adipate) (PBSA). The main aim of this work is to increase the low intrinsic toughness of PLA without compromising the thermal properties by manufacturing ternary blends using epoxidized vegetable oils as compatibilizer agents. The ternary blends were manufactured by reactive extrusion in a co-rotating extruder and were subjected to mechanical, thermal, thermos-mechanical and morphology characterization. The obtained results confirm that these two succinic acid-derived polymers, i.e., PBS and PBSA, positively contribute to increase ductile properties in ternary blends with PLA and PHB with a subsequent improvement on impact toughness. In addition, both epoxidized vegetable oils, ELO and ESBO, are responsible for somewhat compatibilization between all three polyesters in blends which gives improved ductile properties with regard to uncompatibilized ternary blends. In addition, the temperature range in which these materials can be used is broader than ternary blends with other flexible polyester such as poly(e-caprolactone), as both PBS and PBSA melt at about 100 °C. These PLA-based materials with improved impact properties offer interesting applications in the packaging industry. | es_ES |
dc.description.sponsorship | This work was supported by the Ministry of Economy and Competitiveness (MINECO) Grant Numbers MAT2014-59242-C2-1-R and MAT2017-84909-C2-2-R. L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support through a FPI Grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU Grant (FPU15/03812). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Polymer Bulletin | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Poly(lactic acid) (PLA) | es_ES |
dc.subject | Impact toughness | es_ES |
dc.subject | Ternary blends | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Morphology | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00289-018-2475-y | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi | es_ES |
dc.description.bibliographicCitation | Garcia-Campo, M.; Quiles-Carrillo, L.; Sanchez-Nacher, L.; Balart, R.; Montanes, N. (2018). High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polymer Bulletin. 76(4):1839-1859. https://doi.org/10.1007/s00289-018-2475-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00289-018-2475-y | es_ES |
dc.description.upvformatpinicio | 1839 | es_ES |
dc.description.upvformatpfin | 1859 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 76 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\371531 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Arrieta MP, Samper MD, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):26. https://doi.org/10.3390/ma10091008 | es_ES |
dc.description.references | Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jimenez A, Kenny JM (2017) Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging. Food Bioprocess Technol 10(4):770–780. https://doi.org/10.1007/s11947-016-1846-3 | es_ES |
dc.description.references | Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141. https://doi.org/10.1021/acsami.7b05557 | es_ES |
dc.description.references | Bergstrom JS, Hayman D (2016) An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng 44(2):330–340. https://doi.org/10.1007/s10439-015-1455-8 | es_ES |
dc.description.references | Leroy A, Ribeiro S, Grossiord C, Alves A, Vestberg RH, Salles V, Brunon C, Gritsch K, Grosgogeat B, Bayon Y (2017) FTIR microscopy contribution for comprehension of degradation mechanisms in PLA-based implantable medical devices. J Mater Sci Mater Med 28(6):13. https://doi.org/10.1007/s10856-017-5894-7 | es_ES |
dc.description.references | Ferreira RTL, Amatte IC, Dutra TA, Burger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos Part B Eng 124:88–100. https://doi.org/10.1016/j.compositesb.2017.05.013 | es_ES |
dc.description.references | Song Y, Li Y, Song W, Yee K, Lee KY, Tagarielli VL (2017) Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Des 123:154–164. https://doi.org/10.1016/j.matdes.2017.03.051 | es_ES |
dc.description.references | Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Clean Prod 52:392–401. https://doi.org/10.1016/j.jclepro.2013.03.033 | es_ES |
dc.description.references | Nagarajan V, Mohanty AK, Misratt M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916. https://doi.org/10.1021/acssuschemeng.6600321 | es_ES |
dc.description.references | Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007 | es_ES |
dc.description.references | Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014 | es_ES |
dc.description.references | Pozo Morales A, Guemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo–polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286. https://doi.org/10.3390/ma10111286 | es_ES |
dc.description.references | Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007 | es_ES |
dc.description.references | Balart JF, Fombuena V, Fenollar O, Boronat T, Sanchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177. https://doi.org/10.1016/j.compositesb.2015.09.063 | es_ES |
dc.description.references | Qiang T, Yu DM, Gao HH (2012) Impact strength and fractal characteristic of PLA-based wood plastic composites. In: Shao Y et al (eds) Advanced building materials and sustainable architecture, Pts 1–4. Trans Tech Publications Ltd, Durnten-Zurich, p 683 | es_ES |
dc.description.references | Kfoury G, Hassouna F, Raquez JM, Toniazzo V, Ruch D, Dubois P (2014) Tunable and durable toughening of polylactide materials via reactive extrusion. Macromol Mater Eng 299(5):583–595. https://doi.org/10.1002/mame.201300265 | es_ES |
dc.description.references | Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72. https://doi.org/10.1016/j.progpolymsci.2016.05.003 | es_ES |
dc.description.references | Qian W, Song T, Ye M, Xu P, Lu G, Huang X (2017) PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability. Polym Chem 8(28):4098–4107. https://doi.org/10.1039/c7py00762k | es_ES |
dc.description.references | Arrieta MP, Lopez J, Lopez D, Kenny JM, Peponi L (2015) Development of flexible materials based on plasticized electrospun PLA-PHB blends: structural, thermal, mechanical and disintegration properties. Eur Polym J 73:433–446. https://doi.org/10.1016/j.eurpolymj.2015.10.036 | es_ES |
dc.description.references | Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)poly (butylene succinate) films. Materials 10(7):16. https://doi.org/10.3390/ma10070809 | es_ES |
dc.description.references | Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros-Ciencia E Tecnologia 25(6):581–590. https://doi.org/10.1590/0104-1428.1986 | es_ES |
dc.description.references | Shirai MA, Olivera Mueller CM, Eiras Grossmann MV, Yamashita F (2015) Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. J Polym Environ 23(1):54–61. https://doi.org/10.1007/s10924-014-0680-9 | es_ES |
dc.description.references | Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Eur Polym J 47(11):2134–2144 | es_ES |
dc.description.references | Zubir NHM, Sam ST, Zulkepli NN, Omar MF (2018) The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polym Bull 75(1):61–76 | es_ES |
dc.description.references | Pluta M, Piorkowska E (2015) Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 46:79–87. https://doi.org/10.1016/j.polymertesting.2015.06.014 | es_ES |
dc.description.references | Nazari T, Garmabi H (2018) The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. Polym Int 67(2):178–188 | es_ES |
dc.description.references | Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009 | es_ES |
dc.description.references | Burgos N, Tolaguera D, Fiori S, Jimenez A (2014) Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly(lactic acid) plasticizers. J Polym Environ 22(2):227–235. https://doi.org/10.1007/s10924-013-0628-5 | es_ES |
dc.description.references | Ali F, Chang Y-W, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98 | es_ES |
dc.description.references | Ferri JM, Fenollar O, Jorda-Vilaplana A, García-Sanoguera D, Balart R (2016) Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polym Int 65:453–463 | es_ES |
dc.description.references | Ostafinska A, Fortelny I, Hodan J, Krejcikova S, Nevoralova M, Kredatusova J, Krulis Z, Kotek J, Slouf M (2017) Strong synergistic effects in PLA/PCL blends: impact of PIA matrix viscosity. J Mech Behav Biomed Mater 69:229–241. https://doi.org/10.1016/j.jmbbm.2017.01.015 | es_ES |
dc.description.references | Ning Z, Liu J, Jiang N, Gan Z (2017) Enhanced crystallization rate and mechanical properties of poly (l-lactic acid) by stereocomplexation with four-armed poly (ϵ-caprolactone)-block-poly (d-lactic acid) diblock copolymer. Polym Int 66(6):968–976 | es_ES |
dc.description.references | Fortelný I, Ostafińska A, Michálková D, Jůza J, Mikešová J, Šlouf M (2015) Phase structure evolution during mixing and processing of poly (lactic acid)/polycaprolactone (PLA/PCL) blends. Polym Bull 72(11):2931–2947 | es_ES |
dc.description.references | Lai S-M, Liu Y-H, Huang C-T, Don T-M (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res. https://doi.org/10.1007/s10965-017-1253-0 | es_ES |
dc.description.references | Amor A, Okhay N, Guinault A, Miquelard-Garnier G, Sollogoub C, Gervais M (2018) Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Exp Polym Lett 12(2):114–125. https://doi.org/10.3144/expresspolymlett.2018.10 | es_ES |
dc.description.references | Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Olsson RT, Gamez-Perez J, Cabedo L (2017) Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polym Test 62:235–245. https://doi.org/10.1016/j.polymertesting.2017.06.026 | es_ES |
dc.description.references | Huang XX, Tao XM, Zhang ZH, Chen P (2017) Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) filament yarns. Text Res J 87(20):2464–2474. https://doi.org/10.1177/0040517516671128 | es_ES |
dc.description.references | Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035 | es_ES |
dc.description.references | Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) Physical and degradation properties of polylactic acid and thermoplastic starch blends—effect of citric acid treatment on starch structures. BioResources 12(2):3076–3087 | es_ES |
dc.description.references | Fernandes TMD, Leite MCAM, de Sousa AMF, Furtado CRG, Escócio VA, da Silva ALN (2017) Improvement in toughness of polylactide/poly (butylene adipate-co-terephthalate) blend by adding nitrile rubber. Polym Bull 74(5):1713–1726 | es_ES |
dc.description.references | Luzi F, Fortunati E, Jimenez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289. https://doi.org/10.1016/j.indcrop.2016.01.045 | es_ES |
dc.description.references | Supthanyakul R, Kaabbuathong N, Chirachanchai S (2017) Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym Degrad Stab 142:160–168. https://doi.org/10.1016/j.polymdegradstab.2017.05.029 | es_ES |
dc.description.references | Hu X, Su T, Li P, Wang Z (2018) Blending modification of PBS/PLA and its enzymatic degradation. Polym Bull 75(2):533–546 | es_ES |
dc.description.references | Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 80:1–17. https://doi.org/10.1016/j.polymer.2015.10.038 | es_ES |
dc.description.references | Pigatto C, Santos Almeida JH, Luiz Ornaghi H, Rodríguez AL, Mählmann CM, Amico SC (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33(12):2262–2270 | es_ES |
dc.description.references | Liu L, Wang Y, Li Y, Wu J, Zhou Z, Jiang C (2009) Improved fracture toughness of immiscible polypropylene/ethylene-co-vinyl acetate blends with multiwalled carbon nanotubes. Polymer 50(14):3072–3078 | es_ES |
dc.description.references | Samper-Madrigal M, Fenollar O, Dominici F, Balart R, Kenny J (2015) The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. J Mater Sci 50(2):863–872 | es_ES |
dc.description.references | Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. J Appl Polym Sci 131(1):39587 | es_ES |
dc.description.references | Si M, Araki T, Ade H, Kilcoyne A, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39(14):4793–4801 | es_ES |
dc.description.references | Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56(11):1440–1447 | es_ES |
dc.description.references | Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Balart R, Cabedo L, Gamez-Perez J (2017) Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. J Appl Polym Sci 134(20):44806. https://doi.org/10.1002/app.44806 | es_ES |
dc.description.references | Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524. https://doi.org/10.1002/pat.3698 | es_ES |
dc.description.references | Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. Eur Polym J 84:693–707. https://doi.org/10.1016/j.eurpolymj.2016.09.057 | es_ES |
dc.description.references | Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 133(13):11. https://doi.org/10.1002/app.43223 | es_ES |
dc.description.references | Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocelluose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139:188–197 | es_ES |
dc.description.references | Yuryev Y, Mohanty AK, Misra M (2016) A new approach to supertough poly(lactic acid): a high temperature reactive blending. Macromol Mater Eng 301(12):1443–1453. https://doi.org/10.1002/mame.201600242 | es_ES |
dc.description.references | Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101. https://doi.org/10.1021/am3004522 | es_ES |
dc.description.references | Carmona VB, Correa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). J Polym Environ 23(1):83–89. https://doi.org/10.1007/s10924-014-0666-7 | es_ES |
dc.description.references | Ross S, Mahasaranon S, Ross GM (2015) Ternary polymer blends based on poly(lactic acid): effect of stereo-regularity and molecular weight. J Appl Polym Sci 132(14):8. https://doi.org/10.1002/app.41780 | es_ES |
dc.description.references | Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Perez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly(lactic acid)-PLA, poly(epsilon-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials (Basel, Switzerland) 10(11):1339. https://doi.org/10.3390/ma10111339 | es_ES |
dc.description.references | García-Campo MJ, Boronat T, Quiles-Carrillo L, Balart R, Montanes N (2017) Manufacturing and characterization of toughened poly (lactic acid)(PLA) formulations by ternary blends with biopolyesters. Polymers 10(1):3 | es_ES |
dc.description.references | Vijayarajan S, Selke SEM, Matuana LM (2014) Continuous blending approach in the manufacture of epoxidized soybean-plasticized poly(lactic acid) sheets and films. Macromol Mater Eng 299(5):622–630. https://doi.org/10.1002/mame.201300226 | es_ES |
dc.description.references | Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9. https://doi.org/10.1016/j.polymer.2016.10.006 | es_ES |
dc.description.references | Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R (2018) Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Mater Des 140:54–63 | es_ES |
dc.description.references | Signori F, Boggioni A, Righetti MC, Escrig Rondan C, Bronco S, Ciardelli F (2015) Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol Mater Eng 300(2):153–160. https://doi.org/10.1002/mame.201400187 | es_ES |
dc.description.references | Ojijo V, Ray SS, Sadiku R (2012) Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly (butylene succinate)-co-adipate. ACS Appl Mater Interfaces 4(12):6689–6700. https://doi.org/10.1021/am301842e | es_ES |
dc.description.references | Ni CY, Luo RC, Xu KT, Chen GQ (2009) Thermal and crystallinity property studies of poly (L-Lactic Acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. J Appl Polym Sci 111(4):1720–1727. https://doi.org/10.1002/app.29182 | es_ES |
dc.description.references | da Silva HSP, Ornaghi HL Jr, Santos Almeida JH Jr, Zattera AJ, Campos Amico S (2014) Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polym Compos 35(6):1078–1086 | es_ES |
dc.description.references | Júnior JHSA, Júnior HLO, Amico SC, Amado FDR (2012) Study of hybrid intralaminate curaua/glass composites. Mater Des 42:111–117 | es_ES |