- -

High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Campo, M.J. es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Sanchez-Nacher, Lourdes es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Montanes, Nestor es_ES
dc.date.accessioned 2019-09-27T10:40:12Z
dc.date.available 2019-09-27T10:40:12Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0170-0839 es_ES
dc.identifier.uri http://hdl.handle.net/10251/126495
dc.description.abstract [EN] This work reports the development of poly(lactic acid) (PLA) formulations with improved toughness by ternary blends with poly(3-hydroxybutyrate) (PHB) and two different flexible polyesters derived from succinic acid, namely poly(butylene succinate) (PBS) and a copolymer, poly(butylene succinate-co-adipate) (PBSA). The main aim of this work is to increase the low intrinsic toughness of PLA without compromising the thermal properties by manufacturing ternary blends using epoxidized vegetable oils as compatibilizer agents. The ternary blends were manufactured by reactive extrusion in a co-rotating extruder and were subjected to mechanical, thermal, thermos-mechanical and morphology characterization. The obtained results confirm that these two succinic acid-derived polymers, i.e., PBS and PBSA, positively contribute to increase ductile properties in ternary blends with PLA and PHB with a subsequent improvement on impact toughness. In addition, both epoxidized vegetable oils, ELO and ESBO, are responsible for somewhat compatibilization between all three polyesters in blends which gives improved ductile properties with regard to uncompatibilized ternary blends. In addition, the temperature range in which these materials can be used is broader than ternary blends with other flexible polyester such as poly(e-caprolactone), as both PBS and PBSA melt at about 100 °C. These PLA-based materials with improved impact properties offer interesting applications in the packaging industry. es_ES
dc.description.sponsorship This work was supported by the Ministry of Economy and Competitiveness (MINECO) Grant Numbers MAT2014-59242-C2-1-R and MAT2017-84909-C2-2-R. L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support through a FPI Grant (ACIF/2016/182) and the Spanish Ministry of Education, Culture, and Sports (MECD) for his FPU Grant (FPU15/03812). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Polymer Bulletin es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Poly(lactic acid) (PLA) es_ES
dc.subject Impact toughness es_ES
dc.subject Ternary blends es_ES
dc.subject Mechanical properties es_ES
dc.subject Morphology es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00289-018-2475-y es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi es_ES
dc.description.bibliographicCitation Garcia-Campo, M.; Quiles-Carrillo, L.; Sanchez-Nacher, L.; Balart, R.; Montanes, N. (2018). High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polymer Bulletin. 76(4):1839-1859. https://doi.org/10.1007/s00289-018-2475-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00289-018-2475-y es_ES
dc.description.upvformatpinicio 1839 es_ES
dc.description.upvformatpfin 1859 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 76 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\371531 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Arrieta MP, Samper MD, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):26. https://doi.org/10.3390/ma10091008 es_ES
dc.description.references Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jimenez A, Kenny JM (2017) Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging. Food Bioprocess Technol 10(4):770–780. https://doi.org/10.1007/s11947-016-1846-3 es_ES
dc.description.references Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141. https://doi.org/10.1021/acsami.7b05557 es_ES
dc.description.references Bergstrom JS, Hayman D (2016) An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng 44(2):330–340. https://doi.org/10.1007/s10439-015-1455-8 es_ES
dc.description.references Leroy A, Ribeiro S, Grossiord C, Alves A, Vestberg RH, Salles V, Brunon C, Gritsch K, Grosgogeat B, Bayon Y (2017) FTIR microscopy contribution for comprehension of degradation mechanisms in PLA-based implantable medical devices. J Mater Sci Mater Med 28(6):13. https://doi.org/10.1007/s10856-017-5894-7 es_ES
dc.description.references Ferreira RTL, Amatte IC, Dutra TA, Burger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos Part B Eng 124:88–100. https://doi.org/10.1016/j.compositesb.2017.05.013 es_ES
dc.description.references Song Y, Li Y, Song W, Yee K, Lee KY, Tagarielli VL (2017) Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Des 123:154–164. https://doi.org/10.1016/j.matdes.2017.03.051 es_ES
dc.description.references Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Clean Prod 52:392–401. https://doi.org/10.1016/j.jclepro.2013.03.033 es_ES
dc.description.references Nagarajan V, Mohanty AK, Misratt M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916. https://doi.org/10.1021/acssuschemeng.6600321 es_ES
dc.description.references Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007 es_ES
dc.description.references Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014 es_ES
dc.description.references Pozo Morales A, Guemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo–polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286. https://doi.org/10.3390/ma10111286 es_ES
dc.description.references Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007 es_ES
dc.description.references Balart JF, Fombuena V, Fenollar O, Boronat T, Sanchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177. https://doi.org/10.1016/j.compositesb.2015.09.063 es_ES
dc.description.references Qiang T, Yu DM, Gao HH (2012) Impact strength and fractal characteristic of PLA-based wood plastic composites. In: Shao Y et al (eds) Advanced building materials and sustainable architecture, Pts 1–4. Trans Tech Publications Ltd, Durnten-Zurich, p 683 es_ES
dc.description.references Kfoury G, Hassouna F, Raquez JM, Toniazzo V, Ruch D, Dubois P (2014) Tunable and durable toughening of polylactide materials via reactive extrusion. Macromol Mater Eng 299(5):583–595. https://doi.org/10.1002/mame.201300265 es_ES
dc.description.references Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72. https://doi.org/10.1016/j.progpolymsci.2016.05.003 es_ES
dc.description.references Qian W, Song T, Ye M, Xu P, Lu G, Huang X (2017) PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability. Polym Chem 8(28):4098–4107. https://doi.org/10.1039/c7py00762k es_ES
dc.description.references Arrieta MP, Lopez J, Lopez D, Kenny JM, Peponi L (2015) Development of flexible materials based on plasticized electrospun PLA-PHB blends: structural, thermal, mechanical and disintegration properties. Eur Polym J 73:433–446. https://doi.org/10.1016/j.eurpolymj.2015.10.036 es_ES
dc.description.references Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)poly (butylene succinate) films. Materials 10(7):16. https://doi.org/10.3390/ma10070809 es_ES
dc.description.references Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros-Ciencia E Tecnologia 25(6):581–590. https://doi.org/10.1590/0104-1428.1986 es_ES
dc.description.references Shirai MA, Olivera Mueller CM, Eiras Grossmann MV, Yamashita F (2015) Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. J Polym Environ 23(1):54–61. https://doi.org/10.1007/s10924-014-0680-9 es_ES
dc.description.references Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Eur Polym J 47(11):2134–2144 es_ES
dc.description.references Zubir NHM, Sam ST, Zulkepli NN, Omar MF (2018) The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polym Bull 75(1):61–76 es_ES
dc.description.references Pluta M, Piorkowska E (2015) Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 46:79–87. https://doi.org/10.1016/j.polymertesting.2015.06.014 es_ES
dc.description.references Nazari T, Garmabi H (2018) The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. Polym Int 67(2):178–188 es_ES
dc.description.references Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009 es_ES
dc.description.references Burgos N, Tolaguera D, Fiori S, Jimenez A (2014) Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly(lactic acid) plasticizers. J Polym Environ 22(2):227–235. https://doi.org/10.1007/s10924-013-0628-5 es_ES
dc.description.references Ali F, Chang Y-W, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98 es_ES
dc.description.references Ferri JM, Fenollar O, Jorda-Vilaplana A, García-Sanoguera D, Balart R (2016) Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polym Int 65:453–463 es_ES
dc.description.references Ostafinska A, Fortelny I, Hodan J, Krejcikova S, Nevoralova M, Kredatusova J, Krulis Z, Kotek J, Slouf M (2017) Strong synergistic effects in PLA/PCL blends: impact of PIA matrix viscosity. J Mech Behav Biomed Mater 69:229–241. https://doi.org/10.1016/j.jmbbm.2017.01.015 es_ES
dc.description.references Ning Z, Liu J, Jiang N, Gan Z (2017) Enhanced crystallization rate and mechanical properties of poly (l-lactic acid) by stereocomplexation with four-armed poly (ϵ-caprolactone)-block-poly (d-lactic acid) diblock copolymer. Polym Int 66(6):968–976 es_ES
dc.description.references Fortelný I, Ostafińska A, Michálková D, Jůza J, Mikešová J, Šlouf M (2015) Phase structure evolution during mixing and processing of poly (lactic acid)/polycaprolactone (PLA/PCL) blends. Polym Bull 72(11):2931–2947 es_ES
dc.description.references Lai S-M, Liu Y-H, Huang C-T, Don T-M (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res. https://doi.org/10.1007/s10965-017-1253-0 es_ES
dc.description.references Amor A, Okhay N, Guinault A, Miquelard-Garnier G, Sollogoub C, Gervais M (2018) Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Exp Polym Lett 12(2):114–125. https://doi.org/10.3144/expresspolymlett.2018.10 es_ES
dc.description.references Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Olsson RT, Gamez-Perez J, Cabedo L (2017) Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polym Test 62:235–245. https://doi.org/10.1016/j.polymertesting.2017.06.026 es_ES
dc.description.references Huang XX, Tao XM, Zhang ZH, Chen P (2017) Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) filament yarns. Text Res J 87(20):2464–2474. https://doi.org/10.1177/0040517516671128 es_ES
dc.description.references Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035 es_ES
dc.description.references Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) Physical and degradation properties of polylactic acid and thermoplastic starch blends—effect of citric acid treatment on starch structures. BioResources 12(2):3076–3087 es_ES
dc.description.references Fernandes TMD, Leite MCAM, de Sousa AMF, Furtado CRG, Escócio VA, da Silva ALN (2017) Improvement in toughness of polylactide/poly (butylene adipate-co-terephthalate) blend by adding nitrile rubber. Polym Bull 74(5):1713–1726 es_ES
dc.description.references Luzi F, Fortunati E, Jimenez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289. https://doi.org/10.1016/j.indcrop.2016.01.045 es_ES
dc.description.references Supthanyakul R, Kaabbuathong N, Chirachanchai S (2017) Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym Degrad Stab 142:160–168. https://doi.org/10.1016/j.polymdegradstab.2017.05.029 es_ES
dc.description.references Hu X, Su T, Li P, Wang Z (2018) Blending modification of PBS/PLA and its enzymatic degradation. Polym Bull 75(2):533–546 es_ES
dc.description.references Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 80:1–17. https://doi.org/10.1016/j.polymer.2015.10.038 es_ES
dc.description.references Pigatto C, Santos Almeida JH, Luiz Ornaghi H, Rodríguez AL, Mählmann CM, Amico SC (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33(12):2262–2270 es_ES
dc.description.references Liu L, Wang Y, Li Y, Wu J, Zhou Z, Jiang C (2009) Improved fracture toughness of immiscible polypropylene/ethylene-co-vinyl acetate blends with multiwalled carbon nanotubes. Polymer 50(14):3072–3078 es_ES
dc.description.references Samper-Madrigal M, Fenollar O, Dominici F, Balart R, Kenny J (2015) The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. J Mater Sci 50(2):863–872 es_ES
dc.description.references Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. J Appl Polym Sci 131(1):39587 es_ES
dc.description.references Si M, Araki T, Ade H, Kilcoyne A, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39(14):4793–4801 es_ES
dc.description.references Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56(11):1440–1447 es_ES
dc.description.references Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Balart R, Cabedo L, Gamez-Perez J (2017) Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. J Appl Polym Sci 134(20):44806. https://doi.org/10.1002/app.44806 es_ES
dc.description.references Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524. https://doi.org/10.1002/pat.3698 es_ES
dc.description.references Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. Eur Polym J 84:693–707. https://doi.org/10.1016/j.eurpolymj.2016.09.057 es_ES
dc.description.references Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 133(13):11. https://doi.org/10.1002/app.43223 es_ES
dc.description.references Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocelluose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139:188–197 es_ES
dc.description.references Yuryev Y, Mohanty AK, Misra M (2016) A new approach to supertough poly(lactic acid): a high temperature reactive blending. Macromol Mater Eng 301(12):1443–1453. https://doi.org/10.1002/mame.201600242 es_ES
dc.description.references Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101. https://doi.org/10.1021/am3004522 es_ES
dc.description.references Carmona VB, Correa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). J Polym Environ 23(1):83–89. https://doi.org/10.1007/s10924-014-0666-7 es_ES
dc.description.references Ross S, Mahasaranon S, Ross GM (2015) Ternary polymer blends based on poly(lactic acid): effect of stereo-regularity and molecular weight. J Appl Polym Sci 132(14):8. https://doi.org/10.1002/app.41780 es_ES
dc.description.references Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Perez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly(lactic acid)-PLA, poly(epsilon-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials (Basel, Switzerland) 10(11):1339. https://doi.org/10.3390/ma10111339 es_ES
dc.description.references García-Campo MJ, Boronat T, Quiles-Carrillo L, Balart R, Montanes N (2017) Manufacturing and characterization of toughened poly (lactic acid)(PLA) formulations by ternary blends with biopolyesters. Polymers 10(1):3 es_ES
dc.description.references Vijayarajan S, Selke SEM, Matuana LM (2014) Continuous blending approach in the manufacture of epoxidized soybean-plasticized poly(lactic acid) sheets and films. Macromol Mater Eng 299(5):622–630. https://doi.org/10.1002/mame.201300226 es_ES
dc.description.references Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9. https://doi.org/10.1016/j.polymer.2016.10.006 es_ES
dc.description.references Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R (2018) Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Mater Des 140:54–63 es_ES
dc.description.references Signori F, Boggioni A, Righetti MC, Escrig Rondan C, Bronco S, Ciardelli F (2015) Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol Mater Eng 300(2):153–160. https://doi.org/10.1002/mame.201400187 es_ES
dc.description.references Ojijo V, Ray SS, Sadiku R (2012) Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly (butylene succinate)-co-adipate. ACS Appl Mater Interfaces 4(12):6689–6700. https://doi.org/10.1021/am301842e es_ES
dc.description.references Ni CY, Luo RC, Xu KT, Chen GQ (2009) Thermal and crystallinity property studies of poly (L-Lactic Acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. J Appl Polym Sci 111(4):1720–1727. https://doi.org/10.1002/app.29182 es_ES
dc.description.references da Silva HSP, Ornaghi HL Jr, Santos Almeida JH Jr, Zattera AJ, Campos Amico S (2014) Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polym Compos 35(6):1078–1086 es_ES
dc.description.references Júnior JHSA, Júnior HLO, Amico SC, Amado FDR (2012) Study of hybrid intralaminate curaua/glass composites. Mater Des 42:111–117 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem