- -

High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid

Mostrar el registro completo del ítem

Garcia-Campo, M.; Quiles-Carrillo, L.; Sanchez-Nacher, L.; Balart, R.; Montanes, N. (2018). High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid. Polymer Bulletin. 76(4):1839-1859. https://doi.org/10.1007/s00289-018-2475-y

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126495

Ficheros en el ítem

Metadatos del ítem

Título: High toughness poly (lactic acid) (PLA) formulations obtained by ternary blends with poly (3-hydroxybutyrate) (PHB) and flexible polyesters from succinic acid
Autor: Garcia-Campo, M.J. Quiles-Carrillo, Luis Sanchez-Nacher, Lourdes Balart, Rafael Montanes, Nestor
Entidad UPV: Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials
Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Escuela Politécnica Superior de Alcoy - Escola Politècnica Superior d'Alcoi
Fecha difusión:
Resumen:
[EN] This work reports the development of poly(lactic acid) (PLA) formulations with improved toughness by ternary blends with poly(3-hydroxybutyrate) (PHB) and two different flexible polyesters derived from succinic acid, ...[+]
Palabras clave: Poly(lactic acid) (PLA) , Impact toughness , Ternary blends , Mechanical properties , Morphology
Derechos de uso: Reserva de todos los derechos
Fuente:
Polymer Bulletin. (issn: 0170-0839 )
DOI: 10.1007/s00289-018-2475-y
Editorial:
Springer-Verlag
Versión del editor: http://doi.org/10.1007/s00289-018-2475-y
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2014-59242-C2-1-R/ES/TECNICAS AVANZADAS DE PROCESADO PARA SISTEMAS ACTIVOS ENCAPSULADOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/
info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/
info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/
Agradecimientos:
This work was supported by the Ministry of Economy and Competitiveness (MINECO) Grant Numbers MAT2014-59242-C2-1-R and MAT2017-84909-C2-2-R. L. Quiles-Carrillo acknowledges Generalitat Valenciana (GV) for financial support ...[+]
Tipo: Artículo

References

Arrieta MP, Samper MD, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):26. https://doi.org/10.3390/ma10091008

Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jimenez A, Kenny JM (2017) Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging. Food Bioprocess Technol 10(4):770–780. https://doi.org/10.1007/s11947-016-1846-3

Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141. https://doi.org/10.1021/acsami.7b05557 [+]
Arrieta MP, Samper MD, Aldas M, Lopez J (2017) On the use of PLA-PHB blends for sustainable food packaging applications. Materials 10(9):26. https://doi.org/10.3390/ma10091008

Burgos N, Armentano I, Fortunati E, Dominici F, Luzi F, Fiori S, Cristofaro F, Visai L, Jimenez A, Kenny JM (2017) Functional properties of plasticized bio-based poly(lactic acid)_poly(hydroxybutyrate) (PLA_PHB) films for active food packaging. Food Bioprocess Technol 10(4):770–780. https://doi.org/10.1007/s11947-016-1846-3

Moustafa H, El Kissi N, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A (2017) PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces 9(23):20132–20141. https://doi.org/10.1021/acsami.7b05557

Bergstrom JS, Hayman D (2016) An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Ann Biomed Eng 44(2):330–340. https://doi.org/10.1007/s10439-015-1455-8

Leroy A, Ribeiro S, Grossiord C, Alves A, Vestberg RH, Salles V, Brunon C, Gritsch K, Grosgogeat B, Bayon Y (2017) FTIR microscopy contribution for comprehension of degradation mechanisms in PLA-based implantable medical devices. J Mater Sci Mater Med 28(6):13. https://doi.org/10.1007/s10856-017-5894-7

Ferreira RTL, Amatte IC, Dutra TA, Burger D (2017) Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers. Compos Part B Eng 124:88–100. https://doi.org/10.1016/j.compositesb.2017.05.013

Song Y, Li Y, Song W, Yee K, Lee KY, Tagarielli VL (2017) Measurements of the mechanical response of unidirectional 3D-printed PLA. Mater Des 123:154–164. https://doi.org/10.1016/j.matdes.2017.03.051

Jandas PJ, Mohanty S, Nayak SK (2013) Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. J Clean Prod 52:392–401. https://doi.org/10.1016/j.jclepro.2013.03.033

Nagarajan V, Mohanty AK, Misratt M (2016) Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4(6):2899–2916. https://doi.org/10.1021/acssuschemeng.6600321

Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, Bennani B, Dubois P (2014) Tailoring polylactide (PLA) properties for automotive applications: effect of addition of designed additives on main mechanical properties. Polym Test 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007

Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014

Pozo Morales A, Guemes A, Fernandez-Lopez A, Carcelen Valero V, De La Rosa Llano S (2017) Bamboo–polylactic acid (PLA) composite material for structural applications. Materials 10(11):1286. https://doi.org/10.3390/ma10111286

Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

Balart JF, Fombuena V, Fenollar O, Boronat T, Sanchez-Nacher L (2016) Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Compos Part B Eng 86:168–177. https://doi.org/10.1016/j.compositesb.2015.09.063

Qiang T, Yu DM, Gao HH (2012) Impact strength and fractal characteristic of PLA-based wood plastic composites. In: Shao Y et al (eds) Advanced building materials and sustainable architecture, Pts 1–4. Trans Tech Publications Ltd, Durnten-Zurich, p 683

Kfoury G, Hassouna F, Raquez JM, Toniazzo V, Ruch D, Dubois P (2014) Tunable and durable toughening of polylactide materials via reactive extrusion. Macromol Mater Eng 299(5):583–595. https://doi.org/10.1002/mame.201300265

Li Z, Tan BH, Lin T, He C (2016) Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog Polym Sci 62:22–72. https://doi.org/10.1016/j.progpolymsci.2016.05.003

Qian W, Song T, Ye M, Xu P, Lu G, Huang X (2017) PAA-g-PLA amphiphilic graft copolymer: synthesis, self-assembly, and drug loading ability. Polym Chem 8(28):4098–4107. https://doi.org/10.1039/c7py00762k

Arrieta MP, Lopez J, Lopez D, Kenny JM, Peponi L (2015) Development of flexible materials based on plasticized electrospun PLA-PHB blends: structural, thermal, mechanical and disintegration properties. Eur Polym J 73:433–446. https://doi.org/10.1016/j.eurpolymj.2015.10.036

Fortunati E, Puglia D, Iannoni A, Terenzi A, Kenny JM, Torre L (2017) Processing conditions, thermal and mechanical responses of stretchable poly (lactic acid)poly (butylene succinate) films. Materials 10(7):16. https://doi.org/10.3390/ma10070809

Maiza M, Benaniba MT, Quintard G, Massardier-Nageotte V (2015) Biobased additive plasticizing polylactic acid (PLA). Polimeros-Ciencia E Tecnologia 25(6):581–590. https://doi.org/10.1590/0104-1428.1986

Shirai MA, Olivera Mueller CM, Eiras Grossmann MV, Yamashita F (2015) Adipate and citrate esters as plasticizers for poly(lactic acid)/thermoplastic starch sheets. J Polym Environ 23(1):54–61. https://doi.org/10.1007/s10924-014-0680-9

Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly (ethylene glycol)(PEG) via reactive extrusion. Eur Polym J 47(11):2134–2144

Zubir NHM, Sam ST, Zulkepli NN, Omar MF (2018) The effect of rice straw particulate loading and polyethylene glycol as plasticizer on the properties of polylactic acid/polyhydroxybutyrate-valerate blends. Polym Bull 75(1):61–76

Pluta M, Piorkowska E (2015) Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polym Test 46:79–87. https://doi.org/10.1016/j.polymertesting.2015.06.014

Nazari T, Garmabi H (2018) The effects of processing parameters on the morphology of PLA/PEG melt electrospun fibers. Polym Int 67(2):178–188

Burgos N, Martino VP, Jimenez A (2013) Characterization and ageing study of poly(lactic acid) films plasticized with oligomeric lactic acid. Polym Degrad Stab 98(2):651–658. https://doi.org/10.1016/j.polymdegradstab.2012.11.009

Burgos N, Tolaguera D, Fiori S, Jimenez A (2014) Synthesis and characterization of lactic acid oligomers: evaluation of performance as poly(lactic acid) plasticizers. J Polym Environ 22(2):227–235. https://doi.org/10.1007/s10924-013-0628-5

Ali F, Chang Y-W, Kang SC, Yoon JY (2009) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98

Ferri JM, Fenollar O, Jorda-Vilaplana A, García-Sanoguera D, Balart R (2016) Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/ polycaprolactone blends. Polym Int 65:453–463

Ostafinska A, Fortelny I, Hodan J, Krejcikova S, Nevoralova M, Kredatusova J, Krulis Z, Kotek J, Slouf M (2017) Strong synergistic effects in PLA/PCL blends: impact of PIA matrix viscosity. J Mech Behav Biomed Mater 69:229–241. https://doi.org/10.1016/j.jmbbm.2017.01.015

Ning Z, Liu J, Jiang N, Gan Z (2017) Enhanced crystallization rate and mechanical properties of poly (l-lactic acid) by stereocomplexation with four-armed poly (ϵ-caprolactone)-block-poly (d-lactic acid) diblock copolymer. Polym Int 66(6):968–976

Fortelný I, Ostafińska A, Michálková D, Jůza J, Mikešová J, Šlouf M (2015) Phase structure evolution during mixing and processing of poly (lactic acid)/polycaprolactone (PLA/PCL) blends. Polym Bull 72(11):2931–2947

Lai S-M, Liu Y-H, Huang C-T, Don T-M (2017) Miscibility and toughness improvement of poly(lactic acid)/poly(3-Hydroxybutyrate) blends using a melt-induced degradation approach. J Polym Res. https://doi.org/10.1007/s10965-017-1253-0

Amor A, Okhay N, Guinault A, Miquelard-Garnier G, Sollogoub C, Gervais M (2018) Combined compatibilization and plasticization effect of low molecular weight poly(lactic acid) in poly(lactic acid)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends. Exp Polym Lett 12(2):114–125. https://doi.org/10.3144/expresspolymlett.2018.10

Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Olsson RT, Gamez-Perez J, Cabedo L (2017) Assessing the thermoformability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(acid lactic) blends compatibilized with diisocyanates. Polym Test 62:235–245. https://doi.org/10.1016/j.polymertesting.2017.06.026

Huang XX, Tao XM, Zhang ZH, Chen P (2017) Properties and performances of fabrics made from bio-based and degradable polylactide acid/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) filament yarns. Text Res J 87(20):2464–2474. https://doi.org/10.1177/0040517516671128

Akrami M, Ghasemi I, Azizi H, Karrabi M, Seyedabadi M (2016) A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr Polym 144:254–262. https://doi.org/10.1016/j.carbpol.2016.02.035

Ibrahim N, Ab Wahab MK, Uylan DN, Ismail H (2017) Physical and degradation properties of polylactic acid and thermoplastic starch blends—effect of citric acid treatment on starch structures. BioResources 12(2):3076–3087

Fernandes TMD, Leite MCAM, de Sousa AMF, Furtado CRG, Escócio VA, da Silva ALN (2017) Improvement in toughness of polylactide/poly (butylene adipate-co-terephthalate) blend by adding nitrile rubber. Polym Bull 74(5):1713–1726

Luzi F, Fortunati E, Jimenez A, Puglia D, Pezzolla D, Gigliotti G, Kenny JM, Chiralt A, Torre L (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crops Prod 93:276–289. https://doi.org/10.1016/j.indcrop.2016.01.045

Supthanyakul R, Kaabbuathong N, Chirachanchai S (2017) Poly(L-lactide-b-butylene succinate-b-L-lactide) triblock copolymer: a multi-functional additive for PLA/PBS blend with a key performance on film clarity. Polym Degrad Stab 142:160–168. https://doi.org/10.1016/j.polymdegradstab.2017.05.029

Hu X, Su T, Li P, Wang Z (2018) Blending modification of PBS/PLA and its enzymatic degradation. Polym Bull 75(2):533–546

Ojijo V, Ray SS (2015) Super toughened biodegradable polylactide blends with non-linear copolymer interfacial architecture obtained via facile in-situ reactive compatibilization. Polymer 80:1–17. https://doi.org/10.1016/j.polymer.2015.10.038

Pigatto C, Santos Almeida JH, Luiz Ornaghi H, Rodríguez AL, Mählmann CM, Amico SC (2012) Study of polypropylene/ethylene-propylene-diene monomer blends reinforced with sisal fibers. Polym Compos 33(12):2262–2270

Liu L, Wang Y, Li Y, Wu J, Zhou Z, Jiang C (2009) Improved fracture toughness of immiscible polypropylene/ethylene-co-vinyl acetate blends with multiwalled carbon nanotubes. Polymer 50(14):3072–3078

Samper-Madrigal M, Fenollar O, Dominici F, Balart R, Kenny J (2015) The effect of sepiolite on the compatibilization of polyethylene–thermoplastic starch blends for environmentally friendly films. J Mater Sci 50(2):863–872

Pal P, Kundu MK, Malas A, Das CK (2014) Compatibilizing effect of halloysite nanotubes in polar–nonpolar hybrid system. J Appl Polym Sci 131(1):39587

Si M, Araki T, Ade H, Kilcoyne A, Fisher R, Sokolov JC, Rafailovich MH (2006) Compatibilizing bulk polymer blends by using organoclays. Macromolecules 39(14):4793–4801

Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56(11):1440–1447

Gonzalez-Ausejo J, Sanchez-Safont E, Maria Lagaron J, Balart R, Cabedo L, Gamez-Perez J (2017) Compatibilization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-poly(lactic acid) blends with diisocyanates. J Appl Polym Sci 134(20):44806. https://doi.org/10.1002/app.44806

Sajna VP, Mohanty S, Nayak SK (2016) Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites. Polym Adv Technol 27(4):515–524. https://doi.org/10.1002/pat.3698

Torres-Giner S, Montanes N, Boronat T, Quiles-Carrillo L, Balart R (2016) Melt grafting of sepiolite nanoclay onto poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by reactive extrusion with multi-functional epoxy-based styrene-acrylic oligomer. Eur Polym J 84:693–707. https://doi.org/10.1016/j.eurpolymj.2016.09.057

Darie-Nita RN, Vasile C, Irimia A, Lipsa R, Rapa M (2016) Evaluation of some eco-friendly plasticizers for PLA films processing. J Appl Polym Sci 133(13):11. https://doi.org/10.1002/app.43223

Meng X, Bocharova V, Tekinalp H, Cheng S, Kisliuk A, Sokolov AP, Kunc V, Peter WH, Ozcan S (2018) Toughening of nanocelluose/PLA composites via bio-epoxy interaction: mechanistic study. Mater Des 139:188–197

Yuryev Y, Mohanty AK, Misra M (2016) A new approach to supertough poly(lactic acid): a high temperature reactive blending. Macromol Mater Eng 301(12):1443–1453. https://doi.org/10.1002/mame.201600242

Zhang K, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4(6):3091–3101. https://doi.org/10.1021/am3004522

Carmona VB, Correa AC, Marconcini JM, Mattoso LHC (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(epsilon-caprolactone) (PCL) and poly(lactic acid) (PLA). J Polym Environ 23(1):83–89. https://doi.org/10.1007/s10924-014-0666-7

Ross S, Mahasaranon S, Ross GM (2015) Ternary polymer blends based on poly(lactic acid): effect of stereo-regularity and molecular weight. J Appl Polym Sci 132(14):8. https://doi.org/10.1002/app.41780

Garcia-Campo MJ, Quiles-Carrillo L, Masia J, Reig-Perez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly(lactic acid)-PLA, poly(epsilon-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB. Materials (Basel, Switzerland) 10(11):1339. https://doi.org/10.3390/ma10111339

García-Campo MJ, Boronat T, Quiles-Carrillo L, Balart R, Montanes N (2017) Manufacturing and characterization of toughened poly (lactic acid)(PLA) formulations by ternary blends with biopolyesters. Polymers 10(1):3

Vijayarajan S, Selke SEM, Matuana LM (2014) Continuous blending approach in the manufacture of epoxidized soybean-plasticized poly(lactic acid) sheets and films. Macromol Mater Eng 299(5):622–630. https://doi.org/10.1002/mame.201300226

Supthanyakul R, Kaabbuathong N, Chirachanchai S (2016) Random poly(butylene succinate-co-lactic acid) as a multi-functional additive for miscibility, toughness, and clarity of PLA/PBS blends. Polymer 105:1–9. https://doi.org/10.1016/j.polymer.2016.10.006

Quiles-Carrillo L, Duart S, Montanes N, Torres-Giner S, Balart R (2018) Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Mater Des 140:54–63

Signori F, Boggioni A, Righetti MC, Escrig Rondan C, Bronco S, Ciardelli F (2015) Evidences of transesterification, chain branching and cross-linking in a biopolyester commercial blend upon reaction with dicumyl peroxide in the melt. Macromol Mater Eng 300(2):153–160. https://doi.org/10.1002/mame.201400187

Ojijo V, Ray SS, Sadiku R (2012) Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly (butylene succinate)-co-adipate. ACS Appl Mater Interfaces 4(12):6689–6700. https://doi.org/10.1021/am301842e

Ni CY, Luo RC, Xu KT, Chen GQ (2009) Thermal and crystallinity property studies of poly (L-Lactic Acid) blended with oligomers of 3-hydroxybutyrate or dendrimers of hydroxyalkanoic acids. J Appl Polym Sci 111(4):1720–1727. https://doi.org/10.1002/app.29182

da Silva HSP, Ornaghi HL Jr, Santos Almeida JH Jr, Zattera AJ, Campos Amico S (2014) Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polym Compos 35(6):1078–1086

Júnior JHSA, Júnior HLO, Amico SC, Amado FDR (2012) Study of hybrid intralaminate curaua/glass composites. Mater Des 42:111–117

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem