- -

The function ω ƒ on simple n-ods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The function ω ƒ on simple n-ods

Mostrar el registro completo del ítem

Vidal-Escobar, I.; Garcia-Ferreira, S. (2019). The function ω ƒ on simple n-ods. Applied General Topology. 20(2):325-347. https://doi.org/10.4995/agt.2019.11065

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/127123

Ficheros en el ítem

Metadatos del ítem

Título: The function ω ƒ on simple n-ods
Autor: Vidal-Escobar, Ivon Garcia-Ferreira, Salvador
Fecha difusión:
Resumen:
[EN] Given a discrete dynamical system (X, ƒ), we consider the function ωƒ-limit set from X to 2x asωƒ(x) = {y ∈ X : there exists a sequence of positive integers n1 < n2 < … such that limk→∞ ƒnk (x) = y},for each x ∈ X. ...[+]
Palabras clave: Simple triod , Equicontinuity , ω-limit set , Fixed points , Discrete dynamical system
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.11065
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2019.11065
Agradecimientos:
The authors would like to thank the anonymous referee for careful reading and very useful suggestions and comments that help to improve the presentation of the paper.
Tipo: Artículo

References

A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63

R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004

W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665 [+]
A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63

R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004

W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665

A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics 216, Marcel Decker Inc. New York (1998).

S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35.

L. Lum, A Characterization of Local Connectivity in Dendroids, Studies in Topology (Proc. Conf., Univ. North Carolina, Charlotte NC 1974); Academic Press (1975), 331-338. https://doi.org/10.1016/B978-0-12-663450-1.50033-5

J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7

S. B. Nadler, Jr., Continuum Theory: An Introduction, A Series of Monographs and Textbooks Pure and Applied Mathematics 158, Marcel Decker Inc. New York (1992).

T. X. Sun, G. W. Su, H. J. Xi and X. Kong, Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. (Engl. Ser.) 33 (2017), 1125-1130. https://doi.org/10.1007/s10114-017-6289-x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem