A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63
R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004
W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665
[+]
A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63
R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004
W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665
A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics 216, Marcel Decker Inc. New York (1998).
S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35.
L. Lum, A Characterization of Local Connectivity in Dendroids, Studies in Topology (Proc. Conf., Univ. North Carolina, Charlotte NC 1974); Academic Press (1975), 331-338. https://doi.org/10.1016/B978-0-12-663450-1.50033-5
J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7
S. B. Nadler, Jr., Continuum Theory: An Introduction, A Series of Monographs and Textbooks Pure and Applied Mathematics 158, Marcel Decker Inc. New York (1992).
T. X. Sun, G. W. Su, H. J. Xi and X. Kong, Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. (Engl. Ser.) 33 (2017), 1125-1130. https://doi.org/10.1007/s10114-017-6289-x
[-]