Mostrar el registro sencillo del ítem
dc.contributor.author | Vidal-Escobar, Ivon | es_ES |
dc.contributor.author | Garcia-Ferreira, Salvador | es_ES |
dc.date.accessioned | 2019-10-03T07:05:48Z | |
dc.date.available | 2019-10-03T07:05:48Z | |
dc.date.issued | 2019-10-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/127123 | |
dc.description.abstract | [EN] Given a discrete dynamical system (X, ƒ), we consider the function ωƒ-limit set from X to 2x asωƒ(x) = {y ∈ X : there exists a sequence of positive integers n1 < n2 < … such that limk→∞ ƒnk (x) = y},for each x ∈ X. In the article [1], A. M. Bruckner and J. Ceder established several conditions which are equivalent to the continuity of the function ωƒ where ƒ: [0,1] → [0,1] is continuous surjection. It is natural to ask whether or not some results of [1] can be extended to finite graphs. In this direction, we study the function ωƒ when the phase space is a n-od simple T. We prove that if ωƒ is a continuous map, then Fix(ƒ2) and Fix(ƒ3) are connected sets. We will provide examples to show that the inverse implication fails when the phase space is a simple triod. However, we will prove that:Theorem A 2. If ƒ: T → T is a continuous function where T is a simple triod then ωƒ is a continuous set valued function iff the family {ƒ0, ƒ1, ƒ2,} is equicontinuous.As a consequence of our results concerning the ωƒ function on the simple triod, we obtain the following characterization of the unit interval.Theorem A 1. Let G be a finite graph. Then G is an arc iff for each continuous function ƒ: G → G the following conditions are equivalent: (1) The function ωƒ is continuous. (2) The set of all fixed points of ƒ2 is nonempty and connected. | es_ES |
dc.description.sponsorship | The authors would like to thank the anonymous referee for careful reading and very useful suggestions and comments that help to improve the presentation of the paper. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Simple triod | es_ES |
dc.subject | Equicontinuity | es_ES |
dc.subject | ω-limit set | es_ES |
dc.subject | Fixed points | es_ES |
dc.subject | Discrete dynamical system | es_ES |
dc.title | The function ω ƒ on simple n-ods | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2019-10-03T06:47:35Z | |
dc.identifier.doi | 10.4995/agt.2019.11065 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Vidal-Escobar, I.; Garcia-Ferreira, S. (2019). The function ω ƒ on simple n-ods. Applied General Topology. 20(2):325-347. https://doi.org/10.4995/agt.2019.11065 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2019.11065 | es_ES |
dc.description.upvformatpinicio | 325 | es_ES |
dc.description.upvformatpfin | 347 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 20 | |
dc.description.issue | 2 | |
dc.identifier.eissn | 1989-4147 | |
dc.description.references | A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63 | es_ES |
dc.description.references | R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004 | es_ES |
dc.description.references | W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665 | es_ES |
dc.description.references | A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics 216, Marcel Decker Inc. New York (1998). | es_ES |
dc.description.references | S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35. | es_ES |
dc.description.references | L. Lum, A Characterization of Local Connectivity in Dendroids, Studies in Topology (Proc. Conf., Univ. North Carolina, Charlotte NC 1974); Academic Press (1975), 331-338. https://doi.org/10.1016/B978-0-12-663450-1.50033-5 | es_ES |
dc.description.references | J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7 | es_ES |
dc.description.references | S. B. Nadler, Jr., Continuum Theory: An Introduction, A Series of Monographs and Textbooks Pure and Applied Mathematics 158, Marcel Decker Inc. New York (1992). | es_ES |
dc.description.references | T. X. Sun, G. W. Su, H. J. Xi and X. Kong, Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. (Engl. Ser.) 33 (2017), 1125-1130. https://doi.org/10.1007/s10114-017-6289-x | es_ES |