- -

The function ω ƒ on simple n-ods

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The function ω ƒ on simple n-ods

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vidal-Escobar, Ivon es_ES
dc.contributor.author Garcia-Ferreira, Salvador es_ES
dc.date.accessioned 2019-10-03T07:05:48Z
dc.date.available 2019-10-03T07:05:48Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127123
dc.description.abstract [EN] Given a discrete dynamical system (X, ƒ), we consider the function ωƒ-limit set from X to 2x asωƒ(x) = {y ∈ X : there exists a sequence of positive integers n1 < n2 < … such that limk→∞ ƒnk (x) = y},for each x ∈ X. In the article [1], A. M. Bruckner and J. Ceder established several conditions which are equivalent to the continuity of the function ωƒ where ƒ: [0,1] → [0,1] is continuous surjection. It is natural to ask whether or not some results of [1] can be extended to finite graphs. In this direction, we study the function ωƒ when the phase space is a n-od simple T. We prove that if ωƒ is a continuous map, then Fix(ƒ2) and Fix(ƒ3) are connected sets. We will provide examples to show that the inverse implication fails when the phase space is a simple triod. However, we will prove that:Theorem A 2. If ƒ: T → T is a continuous function where T is a simple triod then ωƒ is a continuous set valued function iff the family {ƒ0, ƒ1, ƒ2,} is equicontinuous.As a consequence of our results concerning the ωƒ function on the simple triod, we obtain the following characterization of the unit interval.Theorem A 1. Let G be a finite graph. Then G is an arc iff for each continuous function ƒ: G → G the following conditions are equivalent: (1) The function ωƒ is continuous. (2) The set of all fixed points of ƒ2 is nonempty and connected. es_ES
dc.description.sponsorship The authors would like to thank the anonymous referee for careful reading and very useful suggestions and comments that help to improve the presentation of the paper. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Simple triod es_ES
dc.subject Equicontinuity es_ES
dc.subject ω-limit set es_ES
dc.subject Fixed points es_ES
dc.subject Discrete dynamical system es_ES
dc.title The function ω ƒ on simple n-ods es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:35Z
dc.identifier.doi 10.4995/agt.2019.11065
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Vidal-Escobar, I.; Garcia-Ferreira, S. (2019). The function ω ƒ on simple n-ods. Applied General Topology. 20(2):325-347. https://doi.org/10.4995/agt.2019.11065 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.11065 es_ES
dc.description.upvformatpinicio 325 es_ES
dc.description.upvformatpfin 347 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63 es_ES
dc.description.references R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004 es_ES
dc.description.references W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665 es_ES
dc.description.references A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics 216, Marcel Decker Inc. New York (1998). es_ES
dc.description.references S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35. es_ES
dc.description.references L. Lum, A Characterization of Local Connectivity in Dendroids, Studies in Topology (Proc. Conf., Univ. North Carolina, Charlotte NC 1974); Academic Press (1975), 331-338. https://doi.org/10.1016/B978-0-12-663450-1.50033-5 es_ES
dc.description.references J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7 es_ES
dc.description.references S. B. Nadler, Jr., Continuum Theory: An Introduction, A Series of Monographs and Textbooks Pure and Applied Mathematics 158, Marcel Decker Inc. New York (1992). es_ES
dc.description.references T. X. Sun, G. W. Su, H. J. Xi and X. Kong, Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. (Engl. Ser.) 33 (2017), 1125-1130. https://doi.org/10.1007/s10114-017-6289-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem