- -

ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X)

Show full item record

Veisi, A. (2019). ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X). Applied General Topology. 20(2):395-405. https://doi.org/10.4995/agt.2019.11524

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/127133

Files in this item

Item Metadata

Title: ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X)
Author:
Issued date:
Abstract:
[EN] The purpose of this article is to study and investigate ec-filters on X and ec-ideals in C*c (X) in which they are in fact the counterparts of zc-filters on X and zc-ideals in Cc(X) respectively. We show that the ...[+]
Subjects: C-completely regular space , Closed ideal , Functionally countable space , Ec-filter , Ec-ideal , Zero-dimensional space
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.11524
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/agt.2019.11524
Thanks:
The author would like to thank the referee for the careful reading of the manuscript and for pointing out some very useful suggestions toward the improvement of the paper.
Type: Artículo

References

F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997), 2149-2154. https://doi.org/10.1090/S0002-9939-97-04086-0

R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.

A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Zero-sets in point-free topology and strongly z-ideals, Bull. Iranian Math. Soc. 41, no. 5 (2015), 1071-1084. [+]
F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997), 2149-2154. https://doi.org/10.1090/S0002-9939-97-04086-0

R. Engelking, General Topology, Heldermann Verlag Berlin, 1989.

A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Zero-sets in point-free topology and strongly z-ideals, Bull. Iranian Math. Soc. 41, no. 5 (2015), 1071-1084.

N. J. Fine, L. Gillman and J. Lambek, Rings of quotients of rings of functions, Lecture Notes Series Mc-Gill University Press, Montreal, 1966.

M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova 129 (2013), 47-69. https://doi.org/10.4171/RSMUP/129-4

L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976.

M. Henriksen, R. Raphael and R. G. Woods, $SP$-scattered spaces; a new generalization of scattered spaces, Comment. Math. Univ. Carolin. 48, no. 3 (2007), 487-505.

O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16, no. 2 (2015), 183-207. https://doi.org/10.4995/agt.2015.3445

O. A. S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. 93 (1985), 179-184. https://doi.org/10.2307/2044578

M. R. Koushesh, The Banach algebra of continuous bounded functions with separable support, Studia Mathematica 210, no. 3 (2012), 227-237. https://doi.org/10.4064/sm210-3-3

R. Levy and M. D. Rice, Normal P-spaces and the $G_delta$-topology, Colloq. Math. 47 (1981), 227-240. https://doi.org/10.4064/cm-44-2-227-240

M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66.

M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012), 561-571.

D. Rudd, On two sum theorems for ideals of C(X), Michigan Math. J. 17 (1970), 139-141. https://doi.org/10.1307/mmj/1029000423

W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. https://doi.org/10.1090/S0002-9939-1957-0085475-7

A. Veisi, The subalgebras of the functionally countable subalgebra of C(X), Far East J. Math. Sci. (FJMS) 101, no. 10 (2017), 2285-2297. https://doi.org/10.17654/MS101102285

A. Veisi, Invariant norms on the functionally countable subalgebra of C(X) consisting of bounded functions with countable image, JP Journal of Geometry and Topology 21, no. 3 (2018), 167-179. https://doi.org/10.17654/GT021030167

S. Willard, General Topology, Addison-Wesley, 1970.

[-]

This item appears in the following Collection(s)

Show full item record