- -

ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Veisi, Amir es_ES
dc.date.accessioned 2019-10-03T07:26:08Z
dc.date.available 2019-10-03T07:26:08Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127133
dc.description.abstract [EN] The purpose of this article is to study and investigate ec-filters on X and ec-ideals in C*c (X) in which they are in fact the counterparts of zc-filters on X and zc-ideals in Cc(X) respectively. We show that the maximal ideals of C*c (X) are in one-to-one correspondence with the ec-ultrafilters on X. In addition, the sets of ec-ultrafilters and zc-ultrafilters are in one-to-one correspondence. It is also shown that the sets of maximal ideals of Cc(X) and C*c (X) have the same cardinality. As another application of the new concepts, we characterized maximal ideals of C*c (X). Finally, we show that whether the space X is compact, a proper ideal I of Cc(X) is an ec-ideal if and only if it is a closed ideal in Cc(X) if and only if it is an intersection of maximal ideals of Cc(X). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject C-completely regular space es_ES
dc.subject Closed ideal es_ES
dc.subject Functionally countable space es_ES
dc.subject Ec-filter es_ES
dc.subject Ec-ideal es_ES
dc.subject Zero-dimensional space es_ES
dc.title ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X) es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:08Z
dc.identifier.doi 10.4995/agt.2019.11524
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Veisi, A. (2019). ec-Filters and ec-ideals in the functionally countable subalgebra of C*(X). Applied General Topology. 20(2):395-405. https://doi.org/10.4995/agt.2019.11524 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.11524 es_ES
dc.description.upvformatpinicio 395 es_ES
dc.description.upvformatpfin 405 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references F. Azarpanah, Intersection of essential ideals in C(X), Proc. Amer. Math. Soc. 125 (1997), 2149-2154. https://doi.org/10.1090/S0002-9939-97-04086-0 es_ES
dc.description.references R. Engelking, General Topology, Heldermann Verlag Berlin, 1989. es_ES
dc.description.references A. A. Estaji, A. Karimi Feizabadi and M. Abedi, Zero-sets in point-free topology and strongly z-ideals, Bull. Iranian Math. Soc. 41, no. 5 (2015), 1071-1084. es_ES
dc.description.references N. J. Fine, L. Gillman and J. Lambek, Rings of quotients of rings of functions, Lecture Notes Series Mc-Gill University Press, Montreal, 1966. es_ES
dc.description.references M. Ghadermazi, O. A. S. Karamzadeh and M. Namdari, On functionally countable subalgebra of C(X), Rend. Sem. Mat. Univ. Padova 129 (2013), 47-69. https://doi.org/10.4171/RSMUP/129-4 es_ES
dc.description.references L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, 1976. es_ES
dc.description.references M. Henriksen, R. Raphael and R. G. Woods, $SP$-scattered spaces; a new generalization of scattered spaces, Comment. Math. Univ. Carolin. 48, no. 3 (2007), 487-505. es_ES
dc.description.references O. A. S. Karamzadeh, M. Namdari and S. Soltanpour, On the locally functionally countable subalgebra of C(X), Appl. Gen. Topol. 16, no. 2 (2015), 183-207. https://doi.org/10.4995/agt.2015.3445 es_ES
dc.description.references O. A. S. Karamzadeh and M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc. 93 (1985), 179-184. https://doi.org/10.2307/2044578 es_ES
dc.description.references M. R. Koushesh, The Banach algebra of continuous bounded functions with separable support, Studia Mathematica 210, no. 3 (2012), 227-237. https://doi.org/10.4064/sm210-3-3 es_ES
dc.description.references R. Levy and M. D. Rice, Normal P-spaces and the $G_delta$-topology, Colloq. Math. 47 (1981), 227-240. https://doi.org/10.4064/cm-44-2-227-240 es_ES
dc.description.references M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math. 149 (1996), 55-66. es_ES
dc.description.references M. Namdari and A. Veisi, Rings of quotients of the subalgebra of C(X) consisting of functions with countable image, Inter. Math. Forum 7 (2012), 561-571. es_ES
dc.description.references D. Rudd, On two sum theorems for ideals of C(X), Michigan Math. J. 17 (1970), 139-141. https://doi.org/10.1307/mmj/1029000423 es_ES
dc.description.references W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc. 8 (1957), 39-42. https://doi.org/10.1090/S0002-9939-1957-0085475-7 es_ES
dc.description.references A. Veisi, The subalgebras of the functionally countable subalgebra of C(X), Far East J. Math. Sci. (FJMS) 101, no. 10 (2017), 2285-2297. https://doi.org/10.17654/MS101102285 es_ES
dc.description.references A. Veisi, Invariant norms on the functionally countable subalgebra of C(X) consisting of bounded functions with countable image, JP Journal of Geometry and Topology 21, no. 3 (2018), 167-179. https://doi.org/10.17654/GT021030167 es_ES
dc.description.references S. Willard, General Topology, Addison-Wesley, 1970. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem