- -

On proximal fineness of topological groups in their right uniformity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On proximal fineness of topological groups in their right uniformity

Mostrar el registro completo del ítem

Bouziad, A. (2019). On proximal fineness of topological groups in their right uniformity. Applied General Topology. 20(2):419-430. https://doi.org/10.4995/agt.2019.11605

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/127139

Ficheros en el ítem

Metadatos del ítem

Título: On proximal fineness of topological groups in their right uniformity
Autor: Bouziad, Ahmed
Fecha difusión:
Resumen:
[EN] A uniform space X is said to be proximally fine if every proximally continuous function defined on X into an arbitrary uniform pace Y is uniformly continuous. We supply a proof that every topological group which is ...[+]
Palabras clave: Uniform space , Topological group , Proximal continuity , Proximally fine group , Symmetric group , O-radial space
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2019.11605
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2019.11605
Tipo: Artículo

References

J. M. Aarts, J. de Groot and R. H. McDowell, Cotopology for metrizable spaces, Duke Math. J. 37 (1970), 291-295. https://doi.org/10.1215/S0012-7094-70-03737-3

A.V. Arkhangel'skii, Topological Function spaces, Vol. 78, Kluwer Academic, Dordrecht, 1992.

A.V. Arhangel'skii, Some properties of radial spaces, Math. Notes Russ. Acad. Sci. 27 (1980), 50-54. https://doi.org/10.1007/BF01149814 [+]
J. M. Aarts, J. de Groot and R. H. McDowell, Cotopology for metrizable spaces, Duke Math. J. 37 (1970), 291-295. https://doi.org/10.1215/S0012-7094-70-03737-3

A.V. Arkhangel'skii, Topological Function spaces, Vol. 78, Kluwer Academic, Dordrecht, 1992.

A.V. Arhangel'skii, Some properties of radial spaces, Math. Notes Russ. Acad. Sci. 27 (1980), 50-54. https://doi.org/10.1007/BF01149814

T. Banakh, I. Guran and I. Protasov, Algebraically determined topologies on permutation groups, Topology Appl. 159 (2012), 2258-2268. https://doi.org/10.1016/j.topol.2012.04.010

A. Bouziad and J.-P. Troallic, Problems about the uniform structures of topological groups, in: Open Problems in Topology II. Ed. Elliott Pearl. Amsterdam: Elsevier, 2007, 359-366. https://doi.org/10.1016/B978-044452208-5/50038-7

A. Bouziad and J.-P. Troallic, Left and right uniform structures on functionally balanced groups, Topology Appl. 153, no. 13 (2006), 2351-2361. https://doi.org/10.1016/j.topol.2005.03.017

D. Dikranjan and A. Giordano Bruno, Arnautov's problems on semitopological isomorphisms, Appl. Gen. Topol. 10, no. 1 (2009), 85-119. https://doi.org/10.4995/agt.2009.1789

R. Engelking, General Topology, Heldermann, Berlin, 1989.

H. Fuhr and W. Roelcke, Contributions to the theory of boundedness in uniform spaces and topological groups, Note di Matematica 16, no. 2 (1996), 189-226.

S. Hartman and J. Mycielski, On the imbedding of topological groups into connected gopological groups, Colloq. Math. 5 (1958), 167-169. https://doi.org/10.4064/cm-5-2-167-169

H. Herrlich, Quotienten geordneter Raume und Folgenkonvergenz, Fund. Math. 61 (1967), 79-81. https://doi.org/10.4064/fm-61-1-79-81

M. Husek, Ordered sets as uniformities, Topol. Algebra Appl. 6, no. 1 (2018), 67-76. https://doi.org/10.1515/taa-2018-0007

G. L. Itzkowitz, Continuous measures, Baire category, and uniform continuity in topological groups, Pacific J. Math. 54 (1974), 115-125. https://doi.org/10.2140/pjm.1974.54.115

M. Katetov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91. https://doi.org/10.4064/fm-38-1-85-91

I. V. Protasov, Functionally balanced groups, Mat. Zametki 49, no. 6 (1991), 87-91, Translation: Math. Notes 49, no. 6 (1991) , 614-616. https://doi.org/10.1007/BF01156586

W. Roelcke and S. Dierolof, Uniform structures in topological groups and their quotients, McGraw-Hill, New York, 1981.

M. Shlossberg, Balanced and functionally balanced P-groups, Topol. Algebra Appl. 6, no. 1 (2018), 53-59. https://doi.org/10.1515/taa-2018-0006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem