- -

On proximal fineness of topological groups in their right uniformity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On proximal fineness of topological groups in their right uniformity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bouziad, Ahmed es_ES
dc.date.accessioned 2019-10-03T07:47:21Z
dc.date.available 2019-10-03T07:47:21Z
dc.date.issued 2019-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/127139
dc.description.abstract [EN] A uniform space X is said to be proximally fine if every proximally continuous function defined on X into an arbitrary uniform pace Y is uniformly continuous. We supply a proof that every topological group which is functionally generated by its precompact subsets is proximally fine with respect to its right uniformity. On the other hand, we show that there are various permutation groups G on the integers N that are not proximally fine with respect to the topology generated by the sets {g ∈ G : g(A) ⊂ B}, A, B ⊂ N. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Uniform space es_ES
dc.subject Topological group es_ES
dc.subject Proximal continuity es_ES
dc.subject Proximally fine group es_ES
dc.subject Symmetric group es_ES
dc.subject O-radial space es_ES
dc.title On proximal fineness of topological groups in their right uniformity es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-03T06:47:25Z
dc.identifier.doi 10.4995/agt.2019.11605
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bouziad, A. (2019). On proximal fineness of topological groups in their right uniformity. Applied General Topology. 20(2):419-430. https://doi.org/10.4995/agt.2019.11605 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2019.11605 es_ES
dc.description.upvformatpinicio 419 es_ES
dc.description.upvformatpfin 430 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references J. M. Aarts, J. de Groot and R. H. McDowell, Cotopology for metrizable spaces, Duke Math. J. 37 (1970), 291-295. https://doi.org/10.1215/S0012-7094-70-03737-3 es_ES
dc.description.references A.V. Arkhangel'skii, Topological Function spaces, Vol. 78, Kluwer Academic, Dordrecht, 1992. es_ES
dc.description.references A.V. Arhangel'skii, Some properties of radial spaces, Math. Notes Russ. Acad. Sci. 27 (1980), 50-54. https://doi.org/10.1007/BF01149814 es_ES
dc.description.references T. Banakh, I. Guran and I. Protasov, Algebraically determined topologies on permutation groups, Topology Appl. 159 (2012), 2258-2268. https://doi.org/10.1016/j.topol.2012.04.010 es_ES
dc.description.references A. Bouziad and J.-P. Troallic, Problems about the uniform structures of topological groups, in: Open Problems in Topology II. Ed. Elliott Pearl. Amsterdam: Elsevier, 2007, 359-366. https://doi.org/10.1016/B978-044452208-5/50038-7 es_ES
dc.description.references A. Bouziad and J.-P. Troallic, Left and right uniform structures on functionally balanced groups, Topology Appl. 153, no. 13 (2006), 2351-2361. https://doi.org/10.1016/j.topol.2005.03.017 es_ES
dc.description.references D. Dikranjan and A. Giordano Bruno, Arnautov's problems on semitopological isomorphisms, Appl. Gen. Topol. 10, no. 1 (2009), 85-119. https://doi.org/10.4995/agt.2009.1789 es_ES
dc.description.references R. Engelking, General Topology, Heldermann, Berlin, 1989. es_ES
dc.description.references H. Fuhr and W. Roelcke, Contributions to the theory of boundedness in uniform spaces and topological groups, Note di Matematica 16, no. 2 (1996), 189-226. es_ES
dc.description.references S. Hartman and J. Mycielski, On the imbedding of topological groups into connected gopological groups, Colloq. Math. 5 (1958), 167-169. https://doi.org/10.4064/cm-5-2-167-169 es_ES
dc.description.references H. Herrlich, Quotienten geordneter Raume und Folgenkonvergenz, Fund. Math. 61 (1967), 79-81. https://doi.org/10.4064/fm-61-1-79-81 es_ES
dc.description.references M. Husek, Ordered sets as uniformities, Topol. Algebra Appl. 6, no. 1 (2018), 67-76. https://doi.org/10.1515/taa-2018-0007 es_ES
dc.description.references G. L. Itzkowitz, Continuous measures, Baire category, and uniform continuity in topological groups, Pacific J. Math. 54 (1974), 115-125. https://doi.org/10.2140/pjm.1974.54.115 es_ES
dc.description.references M. Katetov, On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91. https://doi.org/10.4064/fm-38-1-85-91 es_ES
dc.description.references I. V. Protasov, Functionally balanced groups, Mat. Zametki 49, no. 6 (1991), 87-91, Translation: Math. Notes 49, no. 6 (1991) , 614-616. https://doi.org/10.1007/BF01156586 es_ES
dc.description.references W. Roelcke and S. Dierolof, Uniform structures in topological groups and their quotients, McGraw-Hill, New York, 1981. es_ES
dc.description.references M. Shlossberg, Balanced and functionally balanced P-groups, Topol. Algebra Appl. 6, no. 1 (2018), 53-59. https://doi.org/10.1515/taa-2018-0006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem