- -

Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals

Mostrar el registro completo del ítem

Rojas-Buzo, S.; García-García, P.; Corma Canós, A. (2018). Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry. 20(13):3081-3091. https://doi.org/10.1039/c8gc00806j

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/127477

Ficheros en el ítem

Metadatos del ítem

Título: Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals
Autor: Rojas-Buzo, Sergio García-García, Pilar Corma Canós, Avelino
Entidad UPV: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Hf-based metal-organic frameworks (MOFs) are reported here as heterogeneous catalysts for the highly selective and efficient cross-aldol condensation of biomass-derived furanic carbonyls with acetone under mild reaction ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c8gc00806j
Editorial:
The Royal Society of Chemistry
Versión del editor: http://doi.org/10.1039/c8gc00806j
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
This work was funded by the Severo Ochoa program (SEV-2016-0683). S. R.-B. acknowledges a PhD fellowship from the Generalitat Valenciana. The Electron Microscopy Service of the Universitat Politecnica de Valencia is ...[+]
Tipo: Artículo

References

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Zhang, Z., Song, J., & Han, B. (2016). Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 117(10), 6834-6880. doi:10.1021/acs.chemrev.6b00457 [+]
Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b

Zhang, Z., Song, J., & Han, B. (2016). Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 117(10), 6834-6880. doi:10.1021/acs.chemrev.6b00457

Chen, S. S., Maneerung, T., Tsang, D. C. W., Ok, Y. S., & Wang, C.-H. (2017). Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 328, 246-273. doi:10.1016/j.cej.2017.07.020

Yan, K., Liu, Y., Lu, Y., Chai, J., & Sun, L. (2017). Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catalysis Science & Technology, 7(8), 1622-1645. doi:10.1039/c7cy00274b

Li, H., Yang, S., Riisager, A., Pandey, A., Sangwan, R. S., Saravanamurugan, S., & Luque, R. (2016). Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 18(21), 5701-5735. doi:10.1039/c6gc02415g

De, S., Dutta, S., & Saha, B. (2016). Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catalysis Science & Technology, 6(20), 7364-7385. doi:10.1039/c6cy01370h

T. V. Bui , S.Crossley and D. E.Resasco , Chemicals and Fuels from Bio-Based Building Blocks , Wiley-VCH Verlag GmbH , 2016 , ch. 17

Mika, L. T., Cséfalvay, E., & Németh, Á. (2017). Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 118(2), 505-613. doi:10.1021/acs.chemrev.7b00395

Zhang, X., Wilson, K., & Lee, A. F. (2016). Heterogeneously Catalyzed Hydrothermal Processing of C5–C6 Sugars. Chemical Reviews, 116(19), 12328-12368. doi:10.1021/acs.chemrev.6b00311

Guan, W., Xu, G., Duan, J., & Shi, S. (2018). Acetone–Butanol–Ethanol Production from Fermentation of Hot-Water-Extracted Hemicellulose Hydrolysate of Pulping Woods. Industrial & Engineering Chemistry Research, 57(2), 775-783. doi:10.1021/acs.iecr.7b03953

Mishra, R. K., & Mohanty, K. (2018). Pyrolysis characteristics and kinetic parameters assessment of three waste biomass. Journal of Renewable and Sustainable Energy, 10(1), 013102. doi:10.1063/1.5000879

Huber, G. W. (2005). Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 308(5727), 1446-1450. doi:10.1126/science.1111166

West, R. M., Liu, Z. Y., Peter, M., Gärtner, C. A., & Dumesic, J. A. (2008). Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. Journal of Molecular Catalysis A: Chemical, 296(1-2), 18-27. doi:10.1016/j.molcata.2008.09.001

Yang, J., Li, N., Li, S., Wang, W., Li, L., Wang, A., … Zhang, T. (2014). Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chem., 16(12), 4879-4884. doi:10.1039/c4gc01314j

Faba, L., Díaz, E., & Ordóñez, S. (2012). Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 113-114, 201-211. doi:10.1016/j.apcatb.2011.11.039

Crossley, S., Faria, J., Shen, M., & Resasco, D. E. (2009). Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science, 327(5961), 68-72. doi:10.1126/science.1180769

Hora, L., Kelbichová, V., Kikhtyanin, O., Bortnovskiy, O., & Kubička, D. (2014). Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides. Catalysis Today, 223, 138-147. doi:10.1016/j.cattod.2013.09.022

Lewis, J. D., Van de Vyver, S., & Román-Leshkov, Y. (2015). Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie International Edition, 54(34), 9835-9838. doi:10.1002/anie.201502939

Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e

Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x

García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835

García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b

Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Remarkable Acceleration of Benzimidazole Synthesis and Cyanosilylation Reactions in a Supramolecular Solid Catalyst. ChemCatChem, 9(6), 997-1004. doi:10.1002/cctc.201601407

Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. Advanced Materials, 29(30), 1701139. doi:10.1002/adma.201701139

Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091

Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Wu, H., Yildirim, T., & Zhou, W. (2013). Exceptional Mechanical Stability of Highly Porous Zirconium Metal–Organic Framework UiO-66 and Its Important Implications. The Journal of Physical Chemistry Letters, 4(6), 925-930. doi:10.1021/jz4002345

Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923

Kuwahara, Y., Kango, H., & Yamashita, H. (2016). Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to γ-Valerolactone over Sulfonic Acid-Functionalized UiO-66. ACS Sustainable Chemistry & Engineering, 5(1), 1141-1152. doi:10.1021/acssuschemeng.6b02464

Valekar, A. H., Cho, K.-H., Chitale, S. K., Hong, D.-Y., Cha, G.-Y., Lee, U.-H., … Hwang, Y. K. (2016). Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chemistry, 18(16), 4542-4552. doi:10.1039/c6gc00524a

Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047

Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257, 213-220. doi:10.1016/j.cattod.2014.08.015

Stassin, T., Reinsch, H., Van de Voorde, B., Wuttke, S., Medina, D. D., Stock, N., … De Vos, D. (2016). Adsorption and Reactive Desorption on Metal-Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. ChemSusChem, 10(3), 643-650. doi:10.1002/cssc.201601000

Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414f

Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139

Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708

Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e

Beyzavi, M. H., Klet, R. C., Tussupbayev, S., Borycz, J., Vermeulen, N. A., Cramer, C. J., … Farha, O. K. (2014). A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 136(45), 15861-15864. doi:10.1021/ja508626n

Beyzavi, M. H., Vermeulen, N. A., Howarth, A. J., Tussupbayev, S., League, A. B., Schweitzer, N. M., … Farha, O. K. (2015). A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 137(42), 13624-13631. doi:10.1021/jacs.5b08440

Ji, P., Feng, X., Veroneau, S. S., Song, Y., & Lin, W. (2017). Trivalent Zirconium and Hafnium Metal–Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines. Journal of the American Chemical Society, 139(44), 15600-15603. doi:10.1021/jacs.7b09093

Hu, Z., Mahdi, E. M., Peng, Y., Qian, Y., Zhang, B., Yan, N., … Zhao, D. (2017). Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 5(19), 8954-8963. doi:10.1039/c7ta00413c

Cao, L., Lin, Z., Peng, F., Wang, W., Huang, R., Wang, C., … Lin, W. (2016). Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts. Angewandte Chemie International Edition, 55(16), 4962-4966. doi:10.1002/anie.201512054

Zheng, J., Wu, M., Jiang, F., Su, W., & Hong, M. (2015). Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chemical Science, 6(6), 3466-3470. doi:10.1039/c5sc00213c

Jakobsen, S., Gianolio, D., Wragg, D. S., Nilsen, M. H., Emerich, H., Bordiga, S., … Lillerud, K. P. (2012). Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Physical Review B, 86(12). doi:10.1103/physrevb.86.125429

deKrafft, K. E., Boyle, W. S., Burk, L. M., Zhou, O. Z., & Lin, W. (2012). Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 22(35), 18139. doi:10.1039/c2jm32299d

Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176

Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

R. A. Sheldon and H.Van Bekkum , Fine Chemicals through Heterogeneous Catalysis , Wiley-VCH Verlag GmbH , 2001

Chheda, J. N., & Dumesic, J. A. (2007). An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catalysis Today, 123(1-4), 59-70. doi:10.1016/j.cattod.2006.12.006

Gürbüz, E. I., Kunkes, E. L., & Dumesic, J. A. (2010). Dual-bed catalyst system for C–C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds. Green Chemistry, 12(2), 223. doi:10.1039/b920369a

West, R. M., Liu, Z. Y., Peter, M., & Dumesic, J. A. (2008). Liquid Alkanes with Targeted Molecular Weights from Biomass-Derived Carbohydrates. ChemSusChem, 1(5), 417-424. doi:10.1002/cssc.200800001

Pham, T. N., Shi, D., & Resasco, D. E. (2014). Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Applied Catalysis B: Environmental, 145, 10-23. doi:10.1016/j.apcatb.2013.01.002

Sutton, A. D., Waldie, F. D., Wu, R., Schlaf, M., ‘Pete’ Silks, L. A., & Gordon, J. C. (2013). The hydrodeoxygenation of bioderived furans into alkanes. Nature Chemistry, 5(5), 428-432. doi:10.1038/nchem.1609

Waidmann, C. R., Pierpont, A. W., Batista, E. R., Gordon, J. C., Martin, R. L., «Pete» Silks, L. A., … Wu, R. (2013). Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings: an experimental and theoretical study. Catal. Sci. Technol., 3(1), 106-115. doi:10.1039/c2cy20395b

Rösler, C., & Fischer, R. A. (2015). Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 17(2), 199-217. doi:10.1039/c4ce01251h

Pastoriza-Santos, I., & Liz-Marzán, L. M. (2009). N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Advanced Functional Materials, 19(5), 679-688. doi:10.1002/adfm.200801566

Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757

CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003

Khan, V., Sharma, S., Bhandari, U., Ali, S. M., & Haque, S. E. (2018). Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sciences, 194, 205-212. doi:10.1016/j.lfs.2017.12.013

Schultz, T. W., Sinks, G. D., & Cronin, M. T. D. (2002). Structure-activity relationships for gene activation oestrogenicity: Evaluation of a diverse set of aromatic chemicals. Environmental Toxicology, 17(1), 14-23. doi:10.1002/tox.10027

Morimoto, C., Satoh, Y., Hara, M., Inoue, S., Tsujita, T., & Okuda, H. (2005). Anti-obese action of raspberry ketone. Life Sciences, 77(2), 194-204. doi:10.1016/j.lfs.2004.12.029

Zumbansen, K., Döhring, A., & List, B. (2010). Morpholinium Trifluoroacetate-Catalyzed Aldol Condensation of Acetone with both Aromatic and Aliphatic Aldehydes. Advanced Synthesis & Catalysis, 352(7), 1135-1138. doi:10.1002/adsc.200900902

Climent, M. J., Corma, A., Iborra, S., & Mifsud, M. (2007). Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis & Catalysis, 349(11-12), 1949-1954. doi:10.1002/adsc.200700026

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem