- -

Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rojas-Buzo, Sergio es_ES
dc.contributor.author García-García, Pilar es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2019-10-06T20:02:08Z
dc.date.available 2019-10-06T20:02:08Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/127477
dc.description.abstract [EN] Hf-based metal-organic frameworks (MOFs) are reported here as heterogeneous catalysts for the highly selective and efficient cross-aldol condensation of biomass-derived furanic carbonyls with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled acetone confirm that acid-base pairs in the MOF framework promote the soft enolization of acetone through a-proton abstraction. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity, which could be regained by Soxhlet extraction. Furthermore, Hf-MOF-808 maintains activity in the presence of frequent contaminants in biomass-based molecules such as water and acids, unlike traditional base catalysts. The generality of the procedure was shown by accomplishing the transformation with aromatic and aliphatic aldehydes with acetone as the enolizable component to yield the corresponding alpha,beta-unsaturated methyl ketones which are versatile synthons in fine chemistry. Hf-MOF-808 could also be used in the one-pot synthesis of allylic alcohols by the sequential aldol condensation reaction to yield the alpha,beta-unsaturated methyl ketone and the subsequent Meerwein-Ponndorf-Verley reduction of the carbonyl by a simple solvent exchange from acetone to isopropyl alcohol. Furthermore, Hf-MOF-808 was decorated with palladium particles and the resultant material could be used in the one-pot aldol condensation and subsequent highly selective double bond reduction. es_ES
dc.description.sponsorship This work was funded by the Severo Ochoa program (SEV-2016-0683). S. R.-B. acknowledges a PhD fellowship from the Generalitat Valenciana. The Electron Microscopy Service of the Universitat Politecnica de Valencia is acknowledged for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8gc00806j es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Rojas-Buzo, S.; García-García, P.; Corma Canós, A. (2018). Hf-based metal-organic frameworks as acid-base catalysts for the transformation of biomass-derived furanic compounds into chemicals. Green Chemistry. 20(13):3081-3091. https://doi.org/10.1039/c8gc00806j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1039/c8gc00806j es_ES
dc.description.upvformatpinicio 3081 es_ES
dc.description.upvformatpfin 3091 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 13 es_ES
dc.relation.pasarela S\367157 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d es_ES
dc.description.references Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492b es_ES
dc.description.references Zhang, Z., Song, J., & Han, B. (2016). Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids. Chemical Reviews, 117(10), 6834-6880. doi:10.1021/acs.chemrev.6b00457 es_ES
dc.description.references Chen, S. S., Maneerung, T., Tsang, D. C. W., Ok, Y. S., & Wang, C.-H. (2017). Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chemical Engineering Journal, 328, 246-273. doi:10.1016/j.cej.2017.07.020 es_ES
dc.description.references Yan, K., Liu, Y., Lu, Y., Chai, J., & Sun, L. (2017). Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catalysis Science & Technology, 7(8), 1622-1645. doi:10.1039/c7cy00274b es_ES
dc.description.references Li, H., Yang, S., Riisager, A., Pandey, A., Sangwan, R. S., Saravanamurugan, S., & Luque, R. (2016). Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 18(21), 5701-5735. doi:10.1039/c6gc02415g es_ES
dc.description.references De, S., Dutta, S., & Saha, B. (2016). Critical design of heterogeneous catalysts for biomass valorization: current thrust and emerging prospects. Catalysis Science & Technology, 6(20), 7364-7385. doi:10.1039/c6cy01370h es_ES
dc.description.references T. V. Bui , S.Crossley and D. E.Resasco , Chemicals and Fuels from Bio-Based Building Blocks , Wiley-VCH Verlag GmbH , 2016 , ch. 17 es_ES
dc.description.references Mika, L. T., Cséfalvay, E., & Németh, Á. (2017). Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability. Chemical Reviews, 118(2), 505-613. doi:10.1021/acs.chemrev.7b00395 es_ES
dc.description.references Zhang, X., Wilson, K., & Lee, A. F. (2016). Heterogeneously Catalyzed Hydrothermal Processing of C5–C6 Sugars. Chemical Reviews, 116(19), 12328-12368. doi:10.1021/acs.chemrev.6b00311 es_ES
dc.description.references Guan, W., Xu, G., Duan, J., & Shi, S. (2018). Acetone–Butanol–Ethanol Production from Fermentation of Hot-Water-Extracted Hemicellulose Hydrolysate of Pulping Woods. Industrial & Engineering Chemistry Research, 57(2), 775-783. doi:10.1021/acs.iecr.7b03953 es_ES
dc.description.references Mishra, R. K., & Mohanty, K. (2018). Pyrolysis characteristics and kinetic parameters assessment of three waste biomass. Journal of Renewable and Sustainable Energy, 10(1), 013102. doi:10.1063/1.5000879 es_ES
dc.description.references Huber, G. W. (2005). Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-Derived Carbohydrates. Science, 308(5727), 1446-1450. doi:10.1126/science.1111166 es_ES
dc.description.references West, R. M., Liu, Z. Y., Peter, M., Gärtner, C. A., & Dumesic, J. A. (2008). Carbon–carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. Journal of Molecular Catalysis A: Chemical, 296(1-2), 18-27. doi:10.1016/j.molcata.2008.09.001 es_ES
dc.description.references Yang, J., Li, N., Li, S., Wang, W., Li, L., Wang, A., … Zhang, T. (2014). Synthesis of diesel and jet fuel range alkanes with furfural and ketones from lignocellulose under solvent free conditions. Green Chem., 16(12), 4879-4884. doi:10.1039/c4gc01314j es_ES
dc.description.references Faba, L., Díaz, E., & Ordóñez, S. (2012). Aqueous-phase furfural-acetone aldol condensation over basic mixed oxides. Applied Catalysis B: Environmental, 113-114, 201-211. doi:10.1016/j.apcatb.2011.11.039 es_ES
dc.description.references Crossley, S., Faria, J., Shen, M., & Resasco, D. E. (2009). Solid Nanoparticles that Catalyze Biofuel Upgrade Reactions at the Water/Oil Interface. Science, 327(5961), 68-72. doi:10.1126/science.1180769 es_ES
dc.description.references Hora, L., Kelbichová, V., Kikhtyanin, O., Bortnovskiy, O., & Kubička, D. (2014). Aldol condensation of furfural and acetone over MgAl layered double hydroxides and mixed oxides. Catalysis Today, 223, 138-147. doi:10.1016/j.cattod.2013.09.022 es_ES
dc.description.references Lewis, J. D., Van de Vyver, S., & Román-Leshkov, Y. (2015). Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie International Edition, 54(34), 9835-9838. doi:10.1002/anie.201502939 es_ES
dc.description.references Stock, N., & Biswas, S. (2011). Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews, 112(2), 933-969. doi:10.1021/cr200304e es_ES
dc.description.references Zhou, H.-C., Long, J. R., & Yaghi, O. M. (2012). Introduction to Metal–Organic Frameworks. Chemical Reviews, 112(2), 673-674. doi:10.1021/cr300014x es_ES
dc.description.references García-García, P., Moreno, J. M., Díaz, U., Bruix, M., & Corma, A. (2016). Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications, 7(1). doi:10.1038/ncomms10835 es_ES
dc.description.references García-García, P., Müller, M., & Corma, A. (2014). MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts. Chemical Science, 5(8), 2979. doi:10.1039/c4sc00265b es_ES
dc.description.references Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Remarkable Acceleration of Benzimidazole Synthesis and Cyanosilylation Reactions in a Supramolecular Solid Catalyst. ChemCatChem, 9(6), 997-1004. doi:10.1002/cctc.201601407 es_ES
dc.description.references Liang, J., Liang, Z., Zou, R., & Zhao, Y. (2017). Heterogeneous Catalysis in Zeolites, Mesoporous Silica, and Metal-Organic Frameworks. Advanced Materials, 29(30), 1701139. doi:10.1002/adma.201701139 es_ES
dc.description.references Zhu, L., Liu, X.-Q., Jiang, H.-L., & Sun, L.-B. (2017). Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 117(12), 8129-8176. doi:10.1021/acs.chemrev.7b00091 es_ES
dc.description.references Herbst, A., & Janiak, C. (2017). MOF catalysts in biomass upgrading towards value-added fine chemicals. CrystEngComm, 19(29), 4092-4117. doi:10.1039/c6ce01782g es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Wu, H., Yildirim, T., & Zhou, W. (2013). Exceptional Mechanical Stability of Highly Porous Zirconium Metal–Organic Framework UiO-66 and Its Important Implications. The Journal of Physical Chemistry Letters, 4(6), 925-930. doi:10.1021/jz4002345 es_ES
dc.description.references Rimoldi, M., Howarth, A. J., DeStefano, M. R., Lin, L., Goswami, S., Li, P., … Farha, O. K. (2016). Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks. ACS Catalysis, 7(2), 997-1014. doi:10.1021/acscatal.6b02923 es_ES
dc.description.references Kuwahara, Y., Kango, H., & Yamashita, H. (2016). Catalytic Transfer Hydrogenation of Biomass-Derived Levulinic Acid and Its Esters to γ-Valerolactone over Sulfonic Acid-Functionalized UiO-66. ACS Sustainable Chemistry & Engineering, 5(1), 1141-1152. doi:10.1021/acssuschemeng.6b02464 es_ES
dc.description.references Valekar, A. H., Cho, K.-H., Chitale, S. K., Hong, D.-Y., Cha, G.-Y., Lee, U.-H., … Hwang, Y. K. (2016). Catalytic transfer hydrogenation of ethyl levulinate to γ-valerolactone over zirconium-based metal–organic frameworks. Green Chemistry, 18(16), 4542-4552. doi:10.1039/c6gc00524a es_ES
dc.description.references Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047 es_ES
dc.description.references Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257, 213-220. doi:10.1016/j.cattod.2014.08.015 es_ES
dc.description.references Stassin, T., Reinsch, H., Van de Voorde, B., Wuttke, S., Medina, D. D., Stock, N., … De Vos, D. (2016). Adsorption and Reactive Desorption on Metal-Organic Frameworks: A Direct Strategy for Lactic Acid Recovery. ChemSusChem, 10(3), 643-650. doi:10.1002/cssc.201601000 es_ES
dc.description.references Chen, J., Li, K., Chen, L., Liu, R., Huang, X., & Ye, D. (2014). Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks. Green Chem., 16(5), 2490-2499. doi:10.1039/c3gc42414f es_ES
dc.description.references Hu, Z., Peng, Y., Gao, Y., Qian, Y., Ying, S., Yuan, D., … Zhao, D. (2016). Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 28(8), 2659-2667. doi:10.1021/acs.chemmater.6b00139 es_ES
dc.description.references Rojas-Buzo, S., García-García, P., & Corma, A. (2017). Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. ChemSusChem, 11(2), 432-438. doi:10.1002/cssc.201701708 es_ES
dc.description.references Liu, Y., Klet, R. C., Hupp, J. T., & Farha, O. (2016). Probing the correlations between the defects in metal–organic frameworks and their catalytic activity by an epoxide ring-opening reaction. Chemical Communications, 52(50), 7806-7809. doi:10.1039/c6cc03727e es_ES
dc.description.references Beyzavi, M. H., Klet, R. C., Tussupbayev, S., Borycz, J., Vermeulen, N. A., Cramer, C. J., … Farha, O. K. (2014). A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2Fixation and Regioselective and Enantioretentive Epoxide Activation. Journal of the American Chemical Society, 136(45), 15861-15864. doi:10.1021/ja508626n es_ES
dc.description.references Beyzavi, M. H., Vermeulen, N. A., Howarth, A. J., Tussupbayev, S., League, A. B., Schweitzer, N. M., … Farha, O. K. (2015). A Hafnium-Based Metal–Organic Framework as a Nature-Inspired Tandem Reaction Catalyst. Journal of the American Chemical Society, 137(42), 13624-13631. doi:10.1021/jacs.5b08440 es_ES
dc.description.references Ji, P., Feng, X., Veroneau, S. S., Song, Y., & Lin, W. (2017). Trivalent Zirconium and Hafnium Metal–Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines. Journal of the American Chemical Society, 139(44), 15600-15603. doi:10.1021/jacs.7b09093 es_ES
dc.description.references Hu, Z., Mahdi, E. M., Peng, Y., Qian, Y., Zhang, B., Yan, N., … Zhao, D. (2017). Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. Journal of Materials Chemistry A, 5(19), 8954-8963. doi:10.1039/c7ta00413c es_ES
dc.description.references Cao, L., Lin, Z., Peng, F., Wang, W., Huang, R., Wang, C., … Lin, W. (2016). Self-Supporting Metal-Organic Layers as Single-Site Solid Catalysts. Angewandte Chemie International Edition, 55(16), 4962-4966. doi:10.1002/anie.201512054 es_ES
dc.description.references Zheng, J., Wu, M., Jiang, F., Su, W., & Hong, M. (2015). Stable porphyrin Zr and Hf metal–organic frameworks featuring 2.5 nm cages: high surface areas, SCSC transformations and catalyses. Chemical Science, 6(6), 3466-3470. doi:10.1039/c5sc00213c es_ES
dc.description.references Jakobsen, S., Gianolio, D., Wragg, D. S., Nilsen, M. H., Emerich, H., Bordiga, S., … Lillerud, K. P. (2012). Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66. Physical Review B, 86(12). doi:10.1103/physrevb.86.125429 es_ES
dc.description.references deKrafft, K. E., Boyle, W. S., Burk, L. M., Zhou, O. Z., & Lin, W. (2012). Zr- and Hf-based nanoscale metal–organic frameworks as contrast agents for computed tomography. Journal of Materials Chemistry, 22(35), 18139. doi:10.1039/c2jm32299d es_ES
dc.description.references Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., … Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176 es_ES
dc.description.references Furukawa, H., Gándara, F., Zhang, Y.-B., Jiang, J., Queen, W. L., Hudson, M. R., & Yaghi, O. M. (2014). Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. Journal of the American Chemical Society, 136(11), 4369-4381. doi:10.1021/ja500330a es_ES
dc.description.references Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d es_ES
dc.description.references R. A. Sheldon and H.Van Bekkum , Fine Chemicals through Heterogeneous Catalysis , Wiley-VCH Verlag GmbH , 2001 es_ES
dc.description.references Chheda, J. N., & Dumesic, J. A. (2007). An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catalysis Today, 123(1-4), 59-70. doi:10.1016/j.cattod.2006.12.006 es_ES
dc.description.references Gürbüz, E. I., Kunkes, E. L., & Dumesic, J. A. (2010). Dual-bed catalyst system for C–C coupling of biomass-derived oxygenated hydrocarbons to fuel-grade compounds. Green Chemistry, 12(2), 223. doi:10.1039/b920369a es_ES
dc.description.references West, R. M., Liu, Z. Y., Peter, M., & Dumesic, J. A. (2008). Liquid Alkanes with Targeted Molecular Weights from Biomass-Derived Carbohydrates. ChemSusChem, 1(5), 417-424. doi:10.1002/cssc.200800001 es_ES
dc.description.references Pham, T. N., Shi, D., & Resasco, D. E. (2014). Evaluating strategies for catalytic upgrading of pyrolysis oil in liquid phase. Applied Catalysis B: Environmental, 145, 10-23. doi:10.1016/j.apcatb.2013.01.002 es_ES
dc.description.references Sutton, A. D., Waldie, F. D., Wu, R., Schlaf, M., ‘Pete’ Silks, L. A., & Gordon, J. C. (2013). The hydrodeoxygenation of bioderived furans into alkanes. Nature Chemistry, 5(5), 428-432. doi:10.1038/nchem.1609 es_ES
dc.description.references Waidmann, C. R., Pierpont, A. W., Batista, E. R., Gordon, J. C., Martin, R. L., «Pete» Silks, L. A., … Wu, R. (2013). Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings: an experimental and theoretical study. Catal. Sci. Technol., 3(1), 106-115. doi:10.1039/c2cy20395b es_ES
dc.description.references Rösler, C., & Fischer, R. A. (2015). Metal–organic frameworks as hosts for nanoparticles. CrystEngComm, 17(2), 199-217. doi:10.1039/c4ce01251h es_ES
dc.description.references Pastoriza-Santos, I., & Liz-Marzán, L. M. (2009). N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Advanced Functional Materials, 19(5), 679-688. doi:10.1002/adfm.200801566 es_ES
dc.description.references Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 es_ES
dc.description.references CLIMENT, M., CORMA, A., IBORRA, S., & MIFSUD, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents. Journal of Catalysis, 247(2), 223-230. doi:10.1016/j.jcat.2007.02.003 es_ES
dc.description.references Khan, V., Sharma, S., Bhandari, U., Ali, S. M., & Haque, S. E. (2018). Raspberry ketone protects against isoproterenol-induced myocardial infarction in rats. Life Sciences, 194, 205-212. doi:10.1016/j.lfs.2017.12.013 es_ES
dc.description.references Schultz, T. W., Sinks, G. D., & Cronin, M. T. D. (2002). Structure-activity relationships for gene activation oestrogenicity: Evaluation of a diverse set of aromatic chemicals. Environmental Toxicology, 17(1), 14-23. doi:10.1002/tox.10027 es_ES
dc.description.references Morimoto, C., Satoh, Y., Hara, M., Inoue, S., Tsujita, T., & Okuda, H. (2005). Anti-obese action of raspberry ketone. Life Sciences, 77(2), 194-204. doi:10.1016/j.lfs.2004.12.029 es_ES
dc.description.references Zumbansen, K., Döhring, A., & List, B. (2010). Morpholinium Trifluoroacetate-Catalyzed Aldol Condensation of Acetone with both Aromatic and Aliphatic Aldehydes. Advanced Synthesis & Catalysis, 352(7), 1135-1138. doi:10.1002/adsc.200900902 es_ES
dc.description.references Climent, M. J., Corma, A., Iborra, S., & Mifsud, M. (2007). Heterogeneous Palladium Catalysts for a New One-Pot Chemical Route in the Synthesis of Fragrances Based on the Heck Reaction. Advanced Synthesis & Catalysis, 349(11-12), 1949-1954. doi:10.1002/adsc.200700026 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem