- -

Characterization and assessment of composite materials via inverse finite element modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization and assessment of composite materials via inverse finite element modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis Albert, Carlos es_ES
dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.date.accessioned 2019-10-08T07:16:27Z
dc.date.available 2019-10-08T07:16:27Z
dc.date.issued 2019-10-03
dc.identifier.uri http://hdl.handle.net/10251/127675
dc.description.abstract [EN] Characterizing mechanical properties play a major role in several fields such as biomedical and manufacturing sectors. In this study, a stochastic inverse model is combined with a finite element (FE) approach to infer full-field mechanical properties from scarce experimental data. This is achieved by means of non-linear combinations of material property realizations, with a certain spatial structure, for constraining stochastic simulations to data within a non-multiGaussian framework. This approach can be applied to the design of highly heterogenous materials, the uncertainty assessment of unknown mechanical properties or to provide accurate medical diagnosis of hard and soft tissues. The developed methodology has been successfully applied to a complex case study. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Multidisciplinary Journal for Education, Social and Technological Sciences
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Inverse modeling es_ES
dc.subject Finite element es_ES
dc.subject Mechanical properties es_ES
dc.subject Heterogeneity characterization es_ES
dc.subject Biomedical es_ES
dc.subject Uncertainty assessment es_ES
dc.title Characterization and assessment of composite materials via inverse finite element modeling es_ES
dc.type Artículo es_ES
dc.date.updated 2019-10-08T07:03:25Z
dc.identifier.doi 10.4995/muse.2019.12374
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Llopis Albert, C.; Rubio Montoya, FJ.; Valero Chuliá, FJ. (2019). Characterization and assessment of composite materials via inverse finite element modeling. Multidisciplinary Journal for Education, Social and Technological Sciences. 6(2):1-10. https://doi.org/10.4995/muse.2019.12374 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/muse.2019.12374 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6
dc.description.issue 2
dc.identifier.eissn 2341-2593
dc.description.references Charmpis, D. C., G. I. Schueller, M. F. Pellissetti (2007). The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. Computational Materials Science 41(1), 27-37. https://doi.org/10.1016/j.commatsci.2007.02.014 es_ES
dc.description.references Gómez-Hernández, J.J., R.M. Srivastava, (1990). ISIM3D: an ANSI-C three-dimensional multiple indicator conditional simulation program. Computer Geoscience 16(4), 395-440. https://doi.org/10.1016/0098-3004(90)90010-Q es_ES
dc.description.references Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. Oxford University Press, NY, NY, 483 pp. es_ES
dc.description.references Ni, Y., M. Y.M. Chiang (2007). Prediction of elastic properties of heterogeneous materials with complex microstructures. Journal of the Mechanics and Physics of Solids 55, 517-532. https://doi.org/10.1016/j.jmps.2006.09.001 es_ES
dc.description.references Li, G., F. Xu, G. Sun, Q. Li (2014). Identification of mechanical properties of the weld line by combining 3D digital image correlation with inverse modelling procedure. International Journal of Advanced Manufacturing Technology 74, 893-905. https://doi.org/10.1007/s00170-014-6034-x es_ES
dc.description.references Llopis-Albert, C., Capilla, J.E. (2009). Stochastic inverse modeling of non multiGaussian transmissivity fields conditional to flow, mass transport and secondary data. 2 Demonstration on a synthetic aquifer. Journal of Hydrology, 371, 53-65. https://doi.org/10.1016/j.jhydrol.2009.03.014 es_ES
dc.description.references Llopis-Albert, C., Capilla, J.E. (2010). Stochastic simulation of non-Gaussian 3D conductivity fields in a fractured medium with multiple statistical populations: case study. Journal of Hydrologic Engineering, 15, 554-566. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000214 es_ES
dc.description.references Llopis-Albert, C., Capilla, J.E. (2010a). Stochastic inverse modelling of hydraulic conductivity fields taking into account independent stochastic structures: A 3D case study. Journal of Hydrology 391, 277-288. https://doi.org/10.1016/j.jhydrol.2010.07.028 es_ES
dc.description.references Llopis-Albert, C., Palacios-Marqués, D., Merigó, J.M. (2014). A coupled stochastic inverse-management framework for dealing with nonpoint agriculture pollution under groundwater parameter uncertainty. Journal of Hydrology 511, 10-16. https://doi.org/10.1016/j.jhydrol.2014.01.021 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research 68, 1429-1431. https://doi.org/10.1016/j.jbusres.2015.01.027 es_ES
dc.description.references Llopis-Albert, C., Pulido-Velazquez, D. (2015). Using MODFLOW code to approach transient hydraulic head with a sharp-interface solution. Hydrological processes 29(8), 2052-2064. https://doi.org/10.1002/hyp.10354 es_ES
dc.description.references Llopis-Albert, C., Merigó, J.M., Xu, Y.J. (2016). A coupled stochastic inverse/sharp interface seawater intrusion approach for coastal aquifers under groundwater parameter uncertainty. Journal of Hydrology 540, 774-783. https://doi.org/10.1016/j.jhydrol.2016.06.065 es_ES
dc.description.references Llopis-Albert, C. Rubio, F., Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences 5(1), 1-16. https://doi.org/10.4995/muse.2018.9867 es_ES
dc.description.references Llopis-Albert, C. Rubio, F., Valero, F. (2018a). Designing Efficient Material Handling Systems Via Automated Guided Vehicles (AGVs). Multidisciplinary Journal for Education, Social and Technological Sciences, 5(2), 97-105.https://doi.org/10.4995/muse.2018.10722 es_ES
dc.description.references Mortazavi, F., E. Ghossein, M. Lévesque, I. Villemure (2014). High resolution measurement of internal full-field displacements and strains using global spectral digital volume correlation. Optics and Lasers in Engineering 55, 44-52. https://doi.org/10.1016/j.optlaseng.2013.10.007 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2015). Assembly line productivity assessment by comparing optimization-simulation algorithms of trajectory planning for industrial robots. Mathematical Problems in Engineering, vol. 2015, Article ID 931048, 10 pages, 2015. https://doi.org/10.1155/2015/931048 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., Suñer, J.L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008 es_ES
dc.description.references Rubio, F., Valero, F., Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2). https://doi.org/10.1177/1729881419839596 es_ES
dc.description.references Sriramula, S., M. K. Chryssanthopoulos (2009). Quantification of uncertainty modelling in stochastic analysis of FRP composites. Composites Part A: Applied Science and Manufacturing 40(11), 1673-1684. https://doi.org/10.1016/j.compositesa.2009.08.020 es_ES
dc.description.references Wu, X., Y. Zhu (2017). Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters 5:8, 527-532. https://doi.org/10.1080/21663831.2017.1343208 es_ES
dc.description.references Zhang, Z., C. Zhan, K. Shankar, E.V. Morozov, H. Kumar, T. Ray (2017). Sensitivity analysis of inverse algorithms for damage detection in composites. Composite Structures 176, 844-859. https://doi.org/10.1016/j.compstruct.2017.06.019 es_ES
dc.description.references Zottis, J., Theis, C.A., da Silva, A (2018). Evaluation of experimentally observed asymmetric distributions of hardness, strain and residual stress in cold drawn bars by FEM-simulation. Journal of Materials Research and Technology. https://doi.org/10.1016/j.jmrt.2018.01.004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem