Mostrar el registro sencillo del ítem
dc.contributor.author | Pajares-Ferrando, Alberto | es_ES |
dc.contributor.author | Blasco, Xavier | es_ES |
dc.contributor.author | Herrero Durá, Juan Manuel | es_ES |
dc.contributor.author | Reynoso-Meza, Gilberto | es_ES |
dc.date.accessioned | 2019-12-19T21:02:35Z | |
dc.date.available | 2019-12-19T21:02:35Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.issn | 1076-2787 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/133380 | |
dc.description.abstract | [EN] Traditionally, in a multiobjective optimization problem, the aim is to find the set of optimal solutions, the Pareto front, which provides the decision-maker with a better understanding of the problem. This results in a more knowledgeable decision. However, multimodal solutions and nearly optimal solutions are ignored, although their consideration may be useful for the decision-maker. In particular, there are some of these solutions which we consider specially interesting, namely, the ones that have distinct characteristics from those which dominate them (i.e., the solutions that are not dominated in their neighborhood). We call these solutions potentially useful solutions. In this work, a new genetic algorithm called nevMOGA is presented, which provides not only the optimal solutions but also the multimodal and nearly optimal solutions nondominated in their neighborhood. This means that nevMOGA is able to supply additional and potentially useful solutions for the decision-making stage. This is its main advantage. In order to assess its performance, nevMOGA is tested on two benchmarks and compared with two other optimization algorithms (random and exhaustive searches). Finally, as an example of application, nevMOGA is used in an engineering problem to optimally adjust the parameters of two PI controllers that operate a plant. | es_ES |
dc.description.sponsorship | This work was partially supported by the Ministerio de Economia y Competitividad (Spain) Grant numbers DPI2015-71443-R and FPU15/01652, by the local administration Generalitat Valenciana through the project GV/2017/029, and by the National Council of Scientific and Technological Development of Brazil (CNPq) through the grant PQ-2/304066/2016-8. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | Complexity | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2018/1792420 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU15%2F01652/ES/FPU15%2F01652/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//GV%2F2017%2F029/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | Pajares-Ferrando, A.; Blasco, X.; Herrero Durá, JM.; Reynoso-Meza, G. (2018). A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA. Complexity. 2018:1-22. https://doi.org/10.1155/2018/1792420 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2018/1792420 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 22 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2018 | es_ES |
dc.relation.pasarela | S\369553 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., & Martínez, M. (2013). Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(3), 251-268. doi:10.1016/j.riai.2013.04.001 | es_ES |
dc.description.references | Reynoso-Meza, G., Sanchis, J., Blasco, X., & García-Nieto, S. (2014). Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing, 24, 341-362. doi:10.1016/j.asoc.2014.07.009 | es_ES |
dc.description.references | SANCHIS, J., MARTINEZ, M., & BLASCO, X. (2008). Integrated multiobjective optimization and a priori preferences using genetic algorithms. Information Sciences, 178(4), 931-951. doi:10.1016/j.ins.2007.09.018 | es_ES |
dc.description.references | Loridan, P. (1984). ?-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43(2), 265-276. doi:10.1007/bf00936165 | es_ES |
dc.description.references | White, D. J. (1986). Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2), 319-337. doi:10.1007/bf00940762 | es_ES |
dc.description.references | Vasile, M., & Locatelli, M. (2008). A hybrid multiagent approach for global trajectory optimization. Journal of Global Optimization, 44(4), 461-479. doi:10.1007/s10898-008-9329-3 | es_ES |
dc.description.references | Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257-271. doi:10.1109/4235.797969 | es_ES |
dc.description.references | Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7 | es_ES |
dc.description.references | Schütze, O., Coello Coello, C. A., & Talbi, E.-G. (2007). Approximating the ε-Efficient Set of an MOP with Stochastic Search Algorithms. Lecture Notes in Computer Science, 128-138. doi:10.1007/978-3-540-76631-5_13 | es_ES |
dc.description.references | Schutze, O., Vasile, M., & Coello, C. A. C. (2011). Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. Journal of Aerospace Computing, Information, and Communication, 8(3), 53-70. doi:10.2514/1.46478 | es_ES |
dc.description.references | Sareni, B., & Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation, 2(3), 97-106. doi:10.1109/4235.735432 | es_ES |
dc.description.references | Schutze, O., Esquivel, X., Lara, A., & Coello, C. A. C. (2012). Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(4), 504-522. doi:10.1109/tevc.2011.2161872 | es_ES |
dc.description.references | Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010 | es_ES |