- -

A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pajares-Ferrando, Alberto es_ES
dc.contributor.author Blasco, Xavier es_ES
dc.contributor.author Herrero Durá, Juan Manuel es_ES
dc.contributor.author Reynoso-Meza, Gilberto es_ES
dc.date.accessioned 2019-12-19T21:02:35Z
dc.date.available 2019-12-19T21:02:35Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1076-2787 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133380
dc.description.abstract [EN] Traditionally, in a multiobjective optimization problem, the aim is to find the set of optimal solutions, the Pareto front, which provides the decision-maker with a better understanding of the problem. This results in a more knowledgeable decision. However, multimodal solutions and nearly optimal solutions are ignored, although their consideration may be useful for the decision-maker. In particular, there are some of these solutions which we consider specially interesting, namely, the ones that have distinct characteristics from those which dominate them (i.e., the solutions that are not dominated in their neighborhood). We call these solutions potentially useful solutions. In this work, a new genetic algorithm called nevMOGA is presented, which provides not only the optimal solutions but also the multimodal and nearly optimal solutions nondominated in their neighborhood. This means that nevMOGA is able to supply additional and potentially useful solutions for the decision-making stage. This is its main advantage. In order to assess its performance, nevMOGA is tested on two benchmarks and compared with two other optimization algorithms (random and exhaustive searches). Finally, as an example of application, nevMOGA is used in an engineering problem to optimally adjust the parameters of two PI controllers that operate a plant. es_ES
dc.description.sponsorship This work was partially supported by the Ministerio de Economia y Competitividad (Spain) Grant numbers DPI2015-71443-R and FPU15/01652, by the local administration Generalitat Valenciana through the project GV/2017/029, and by the National Council of Scientific and Technological Development of Brazil (CNPq) through the grant PQ-2/304066/2016-8. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Complexity es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2018/1792420 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F01652/ES/FPU15%2F01652/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2017%2F029/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation Pajares-Ferrando, A.; Blasco, X.; Herrero Durá, JM.; Reynoso-Meza, G. (2018). A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA. Complexity. 2018:1-22. https://doi.org/10.1155/2018/1792420 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2018/1792420 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 22 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2018 es_ES
dc.relation.pasarela S\369553 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., & Martínez, M. (2013). Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(3), 251-268. doi:10.1016/j.riai.2013.04.001 es_ES
dc.description.references Reynoso-Meza, G., Sanchis, J., Blasco, X., & García-Nieto, S. (2014). Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing, 24, 341-362. doi:10.1016/j.asoc.2014.07.009 es_ES
dc.description.references SANCHIS, J., MARTINEZ, M., & BLASCO, X. (2008). Integrated multiobjective optimization and a priori preferences using genetic algorithms. Information Sciences, 178(4), 931-951. doi:10.1016/j.ins.2007.09.018 es_ES
dc.description.references Loridan, P. (1984). ?-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43(2), 265-276. doi:10.1007/bf00936165 es_ES
dc.description.references White, D. J. (1986). Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2), 319-337. doi:10.1007/bf00940762 es_ES
dc.description.references Vasile, M., & Locatelli, M. (2008). A hybrid multiagent approach for global trajectory optimization. Journal of Global Optimization, 44(4), 461-479. doi:10.1007/s10898-008-9329-3 es_ES
dc.description.references Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257-271. doi:10.1109/4235.797969 es_ES
dc.description.references Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7 es_ES
dc.description.references Schütze, O., Coello Coello, C. A., & Talbi, E.-G. (2007). Approximating the ε-Efficient Set of an MOP with Stochastic Search Algorithms. Lecture Notes in Computer Science, 128-138. doi:10.1007/978-3-540-76631-5_13 es_ES
dc.description.references Schutze, O., Vasile, M., & Coello, C. A. C. (2011). Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. Journal of Aerospace Computing, Information, and Communication, 8(3), 53-70. doi:10.2514/1.46478 es_ES
dc.description.references Sareni, B., & Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation, 2(3), 97-106. doi:10.1109/4235.735432 es_ES
dc.description.references Schutze, O., Esquivel, X., Lara, A., & Coello, C. A. C. (2012). Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(4), 504-522. doi:10.1109/tevc.2011.2161872 es_ES
dc.description.references Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem