- -

A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA

Mostrar el registro completo del ítem

Pajares-Ferrando, A.; Blasco, X.; Herrero Durá, JM.; Reynoso-Meza, G. (2018). A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA. Complexity. 2018:1-22. https://doi.org/10.1155/2018/1792420

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/133380

Ficheros en el ítem

Metadatos del ítem

Título: A Multiobjective Genetic Algorithm for the Localization of Optimal and Nearly Optimal Solutions Which Are Potentially Useful: nevMOGA
Autor: Pajares-Ferrando, Alberto Blasco, Xavier Herrero Durá, Juan Manuel Reynoso-Meza, Gilberto
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Traditionally, in a multiobjective optimization problem, the aim is to find the set of optimal solutions, the Pareto front, which provides the decision-maker with a better understanding of the problem. This results ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
Complexity. (issn: 1076-2787 )
DOI: 10.1155/2018/1792420
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1155/2018/1792420
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU15%2F01652/ES/FPU15%2F01652/
info:eu-repo/grantAgreement/MINECO//DPI2015-71443-R/ES/DESARROLLO DE HERRAMIENTAS AVANZADAS PARA METODOLOGIAS DE DISEÑO Y OPTIMIZACION MULTIOBJETIVO EN INGENIERIA DE CONTROL. APLICACION A SISTEMAS MULTIVARIABLES./
info:eu-repo/grantAgreement/GVA//GV%2F2017%2F029/
Agradecimientos:
This work was partially supported by the Ministerio de Economia y Competitividad (Spain) Grant numbers DPI2015-71443-R and FPU15/01652, by the local administration Generalitat Valenciana through the project GV/2017/029, ...[+]
Tipo: Artículo

References

Reynoso-Meza, G., Sanchis, J., Blasco, X., & Martínez, M. (2013). Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(3), 251-268. doi:10.1016/j.riai.2013.04.001

Reynoso-Meza, G., Sanchis, J., Blasco, X., & García-Nieto, S. (2014). Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing, 24, 341-362. doi:10.1016/j.asoc.2014.07.009

SANCHIS, J., MARTINEZ, M., & BLASCO, X. (2008). Integrated multiobjective optimization and a priori preferences using genetic algorithms. Information Sciences, 178(4), 931-951. doi:10.1016/j.ins.2007.09.018 [+]
Reynoso-Meza, G., Sanchis, J., Blasco, X., & Martínez, M. (2013). Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 10(3), 251-268. doi:10.1016/j.riai.2013.04.001

Reynoso-Meza, G., Sanchis, J., Blasco, X., & García-Nieto, S. (2014). Physical programming for preference driven evolutionary multi-objective optimization. Applied Soft Computing, 24, 341-362. doi:10.1016/j.asoc.2014.07.009

SANCHIS, J., MARTINEZ, M., & BLASCO, X. (2008). Integrated multiobjective optimization and a priori preferences using genetic algorithms. Information Sciences, 178(4), 931-951. doi:10.1016/j.ins.2007.09.018

Loridan, P. (1984). ?-solutions in vector minimization problems. Journal of Optimization Theory and Applications, 43(2), 265-276. doi:10.1007/bf00936165

White, D. J. (1986). Epsilon efficiency. Journal of Optimization Theory and Applications, 49(2), 319-337. doi:10.1007/bf00940762

Vasile, M., & Locatelli, M. (2008). A hybrid multiagent approach for global trajectory optimization. Journal of Global Optimization, 44(4), 461-479. doi:10.1007/s10898-008-9329-3

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257-271. doi:10.1109/4235.797969

Herrero, J. M., García-Nieto, S., Blasco, X., Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2008). Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Structural and Multidisciplinary Optimization, 39(2), 203-215. doi:10.1007/s00158-008-0323-7

Schütze, O., Coello Coello, C. A., & Talbi, E.-G. (2007). Approximating the ε-Efficient Set of an MOP with Stochastic Search Algorithms. Lecture Notes in Computer Science, 128-138. doi:10.1007/978-3-540-76631-5_13

Schutze, O., Vasile, M., & Coello, C. A. C. (2011). Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. Journal of Aerospace Computing, Information, and Communication, 8(3), 53-70. doi:10.2514/1.46478

Sareni, B., & Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited. IEEE Transactions on Evolutionary Computation, 2(3), 97-106. doi:10.1109/4235.735432

Schutze, O., Esquivel, X., Lara, A., & Coello, C. A. C. (2012). Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(4), 504-522. doi:10.1109/tevc.2011.2161872

Blasco, X., Herrero, J. M., Sanchis, J., & Martínez, M. (2008). A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization. Information Sciences, 178(20), 3908-3924. doi:10.1016/j.ins.2008.06.010

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem