- -

STRUCTURE ANALYSIS AND BIOMASS MODELS FOR PLUM TREE (PRUNUS DOMESTICA L.) IN ECUADOR

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

STRUCTURE ANALYSIS AND BIOMASS MODELS FOR PLUM TREE (PRUNUS DOMESTICA L.) IN ECUADOR

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Cazco-Logroño, C. es_ES
dc.date.accessioned 2019-12-25T21:02:16Z
dc.date.available 2019-12-25T21:02:16Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0014-4797 es_ES
dc.identifier.uri http://hdl.handle.net/10251/133657
dc.description.abstract The development of dendrometric methodologies could allow accurate estimation of variables associated with the crown, such as primary production (fruit and timber) and tree vigor. The aim of this work was to develop a suitable method to estimate woody biomass in plum trees (Prunus domestica L.) in Imbabura, Ecuador by using an adapted dendrometry. Form factors and regression models were defined for branch volume calculation. From this, the distribution of woody biomass in the crown tree was characterized in every stratum. Occupation Factor and regression models were obtained in order to calculate the biomass in the crown tree, which can be used to estimate the CO2 captured in its structure during its development. Regression models for calculation of whole volume of the tree and pruned biomass were directly obtained from crown diameter and crown height with Rajustated 2 of 0.74 and 0.81. The average moisture content of green material was 51%, and the average density of dry material was 0.66 ± 0.07 g cm−3. Proximate analysis of plum wood showed at 79.8 ± 9.2% volatiles and 2.1 ± 0.3% ash. Elemental analysis of the wood pointed to 46.5 ± 1.2% C, 6.1 ± 0.5% H, 46.3 ± 1.2% O, 0.6 ± 0.3% N, 0.06 ± 0.02% S and 0.02 ± 0.01% Cl. Cl, S and N contents are lower than the limits established by the standard EN 14691-part 4.With 46% of C, considering the relation 3.67 (44/12) between CO2 and C content, the CO2 sequestrated in the materials is 1.11 Mg m−3 wood material. Such method represents a tool to manage orchard resources and for assessing other parameters, such as raw materials for cultivation, fruit production, CO2 sink and waste materials (residual wood) used for energy or industry. es_ES
dc.description.sponsorship The authors appreciate the financial support provided by the ECUMASA, Red ecuatoriana para la investigacion del aprovechamiento energetico de la biomasa. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Experimental Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bioenergy es_ES
dc.subject Energy wood es_ES
dc.subject Logistics es_ES
dc.subject Yield prediction es_ES
dc.subject Residues es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title STRUCTURE ANALYSIS AND BIOMASS MODELS FOR PLUM TREE (PRUNUS DOMESTICA L.) IN ECUADOR es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S001447971600079X es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Velázquez Martí, B.; Cazco-Logroño, C. (2017). STRUCTURE ANALYSIS AND BIOMASS MODELS FOR PLUM TREE (PRUNUS DOMESTICA L.) IN ECUADOR. Experimental Agriculture. 54(1):133-141. https://doi.org/10.1017/S001447971600079X es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S001447971600079X es_ES
dc.description.upvformatpinicio 133 es_ES
dc.description.upvformatpfin 141 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 54 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\327733 es_ES
dc.contributor.funder Red Ecuatoriana para la Investigación del Aprovechamiento Energético de la Biomasa
dc.description.references Velázquez-Martí, B., Estornell, J., López-Cortés, I., & Martí-Gavilá, J. (2012). Calculation of biomass volume of citrus trees from an adapted dendrometry. Biosystems Engineering, 112(4), 285-292. doi:10.1016/j.biosystemseng.2012.04.011 es_ES
dc.description.references Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of vineyards in Mediterranean area. Biomass and Bioenergy, 35(8), 3453-3464. doi:10.1016/j.biombioe.2011.04.009 es_ES
dc.description.references Velázquez-Martí, B., Fernández-González, E., López-Cortés, I., & Salazar-Hernández, D. M. (2011). Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass and Bioenergy, 35(7), 3208-3217. doi:10.1016/j.biombioe.2011.04.042 es_ES
dc.description.references B. Velazquez-Marti, & E. Annevelink. (2009). GIS Application to Define Biomass Collection Points as Sources for Linear Programming of Delivery Networks. Transactions of the ASABE, 52(4), 1069-1078. doi:10.13031/2013.27776 es_ES
dc.description.references Sajdak, M., & Velazquez-Marti, B. (2012). Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renewable Energy, 47, 188-193. doi:10.1016/j.renene.2012.04.002 es_ES
dc.description.references Pérez-Arévalo, J. J., Callejón-Ferre, A. J., Velázquez-Martí, B., & Suárez-Medina, M. D. (2015). Prediction models based on higher heating value from the elemental analysis of neem, mango, avocado, banana, and carob trees in Guayas (Ecuador). Journal of Renewable and Sustainable Energy, 7(5), 053122. doi:10.1063/1.4934593 es_ES
dc.description.references Maltamo, M. (2004). Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90(3), 319-330. doi:10.1016/j.rse.2004.01.006 es_ES
dc.description.references García-Tejero, I. F., Durán-Zuazo, V. H., Arriaga, J., & Muriel-Fernández, J. L. (2012). Relationships between trunk- and fruit-diameter growths under deficit-irrigation programmes in orange trees. Scientia Horticulturae, 133, 64-71. doi:10.1016/j.scienta.2011.10.022 es_ES
dc.description.references Estornell, J., Velázquez-Martí, B., López-Cortés, I., Salazar, D., & Fernández-Sarría, A. (2014). Estimation of wood volume and height of olive tree plantations using airborne discrete-return LiDAR data. GIScience & Remote Sensing, 51(1), 17-29. doi:10.1080/15481603.2014.883209 es_ES
dc.description.references EN 14691-part 4 (2009). Solid biofuels – Fuel Specifications and classes – Wood chips for non-industrial use. 10p. es_ES
dc.description.references Doruska, P. F., & Burkhart, H. E. (1994). Modeling the diameter and locational distribution of branches within the crowns of loblolly pine trees in unthinned plantations. Canadian Journal of Forest Research, 24(12), 2362-2376. doi:10.1139/x94-305 es_ES
dc.description.references Deckmyn, G., Evans, S. P., & Randle, T. J. (2006). Refined pipe theory for mechanistic modeling of wood development. Tree Physiology, 26(6), 703-717. doi:10.1093/treephys/26.6.703 es_ES
dc.description.references Bessou, C., Basset-Mens, C., Tran, T., & Benoist, A. (2012). LCA applied to perennial cropping systems: a review focused on the farm stage. The International Journal of Life Cycle Assessment, 18(2), 340-361. doi:10.1007/s11367-012-0502-z es_ES
dc.description.references Andersen, H.-E., Reutebuch, S. E., & McGaughey, R. J. (2006). A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Canadian Journal of Remote Sensing, 32(5), 355-366. doi:10.5589/m06-030 es_ES
dc.description.references Olson, M. E., & Rosell, J. A. (2012). Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist, 197(4), 1204-1213. doi:10.1111/nph.12097 es_ES
dc.description.references Gracia, C., Velázquez-Martí, B., & Estornell, J. (2014). An application of the vehicle routing problem to biomass transportation. Biosystems Engineering, 124, 40-52. doi:10.1016/j.biosystemseng.2014.06.009 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem