- -

Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mehrban, H. es_ES
dc.contributor.author Lee, D. H. es_ES
dc.contributor.author Naserkheil, M. es_ES
dc.contributor.author Moradi, M. H. es_ES
dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.date.accessioned 2020-01-12T21:00:35Z
dc.date.available 2020-01-12T21:00:35Z
dc.date.issued 2019 es_ES
dc.identifier.issn 1932-6203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/134334
dc.description.abstract [EN] Hanwoo, an important indigenous and popular breed of beef cattle in Korea, shows rapid growth and has high meat quality. Its yearling weight (YW) and carcass traits (backfat thickness, carcass weight- CW, eye muscle area, and marbling score) are economically important for selection of young and proven bulls. However, measuring carcass traits is difficult and expensive, and can only be performed postmortem. Genomic selection has become an appealing procedure for genetic evaluation of these traits (by inclusion of the genomic data) along with the possibility of multi-trait analysis. The aim of this study was to compare conventional best linear unbiased prediction (BLUP) and single-step genomic BLUP (ssGBLUP) methods, using both single-trait (ST-BLUP, ST-ssGBLUP) and multi-trait (MT-BLUP, MT-ssGBLUP) models to investigate the improvement of breeding-value accuracy for carcass traits and YW. The data comprised of 15,279 phenotypic records for YW and 5,824 records for carcass traits, and 1,541 genotyped animals for 34,479 single-nucleotide polymorphisms. Accuracy for each trait and model was estimated only for genotyped animals by five-fold cross-validation. ssGBLUP models (ST-ssGBLUP and MT-ssGBLUP) showed ~19% and ~36% greater accuracy than conventional BLUP models (ST-BLUP and MT-BLUP) for YW and carcass traits, respectively. Within ssGBLUP models, the accuracy of the genomically estimated breeding value for CW increased (19%) when ST-ssGBLUP was replaced with the MT-ssGBLUP model, as the inclusion of YW in the analysis led to a strong genetic correlation with CW (0.76). For backfat thickness, eye muscle area, and marbling score, ST- and MT-ssGBLUP models yielded similar accuracy. Thus, combining pedigree and genomic data via the ssGBLUP model may be a promising way to ensure acceptable accuracy of predictions, especially among young animals, for ongoing Hanwoo cattle breeding programs. MT-ssGBLUP is highly recommended when phenotypic records are limited for one of the two highly correlated genetic traits. es_ES
dc.language Inglés es_ES
dc.publisher Public Library of Science es_ES
dc.relation.ispartof PLoS ONE es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1371/journal.pone.0223352 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Mehrban, H.; Lee, DH.; Naserkheil, M.; Moradi, MH.; Ibáñez-Escriche, N. (2019). Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models. PLoS ONE. 1-13. https://doi.org/10.1371/journal.pone.0223352 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1371/journal.pone.0223352 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\393700 es_ES
dc.description.references Choi, T. J., Alam, M., Cho, C. I., Lee, J. G., Park, B., Kim, S., … Roh, S. H. (2015). Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle1. Journal of Animal Science, 93(4), 1511-1521. doi:10.2527/jas.2014-7953 es_ES
dc.description.references Choy, Y. H., Park, B. H., Choi, T. J., Choi, J. G., Cho, K. H., Lee, S. S., … Kim, H. S. (2012). Estimation of Relative Economic Weights of Hanwoo Carcass Traits Based on Carcass Market Price. Asian-Australasian Journal of Animal Sciences, 25(12), 1667-1673. doi:10.5713/ajas.2012.12397 es_ES
dc.description.references Joo, S.-T., Hwang, Y.-H., & Frank, D. (2017). Characteristics of Hanwoo cattle and health implications of consuming highly marbled Hanwoo beef. Meat Science, 132, 45-51. doi:10.1016/j.meatsci.2017.04.262 es_ES
dc.description.references Park, B., Choi, T., Kim, S., & Oh, S.-H. (2013). National Genetic Evaluation (System) of Hanwoo (Korean Native Cattle). Asian-Australasian Journal of Animal Sciences, 26(2), 151-156. doi:10.5713/ajas.2012.12439 es_ES
dc.description.references Chen, L., Vinsky, M., & Li, C. (2014). Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle. Animal Genetics, 46(1), 55-59. doi:10.1111/age.12238 es_ES
dc.description.references Rolf, M. M., Garrick, D. J., Fountain, T., Ramey, H. R., Weaber, R. L., Decker, J. E., … Taylor, J. F. (2015). Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0106-8 es_ES
dc.description.references Mehrban, H., Lee, D. H., Moradi, M. H., IlCho, C., Naserkheil, M., & Ibáñez-Escriche, N. (2017). Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-016-0283-0 es_ES
dc.description.references Misztal, I., Aggrey, S. E., & Muir, W. M. (2013). Experiences with a single-step genome evaluation. Poultry Science, 92(9), 2530-2534. doi:10.3382/ps.2012-02739 es_ES
dc.description.references Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92(2), 433-443. doi:10.3168/jds.2008-1646 es_ES
dc.description.references VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. (2009). Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92(1), 16-24. doi:10.3168/jds.2008-1514 es_ES
dc.description.references Misztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 92(9), 4648-4655. doi:10.3168/jds.2009-2064 es_ES
dc.description.references Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92(9), 4656-4663. doi:10.3168/jds.2009-2061 es_ES
dc.description.references Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93(2), 743-752. doi:10.3168/jds.2009-2730 es_ES
dc.description.references Ibáñez-Escriche, N., Forni, S., Noguera, J. L., & Varona, L. (2014). Genomic information in pig breeding: Science meets industry needs. Livestock Science, 166, 94-100. doi:10.1016/j.livsci.2014.05.020 es_ES
dc.description.references Onogi, A., Ogino, A., Komatsu, T., Shoji, N., Simizu, K., Kurogi, K., … Iwata, H. (2014). Genomic prediction in Japanese Black cattle: Application of a single-step approach to beef cattle. Journal of Animal Science, 92(5), 1931-1938. doi:10.2527/jas.2014-7168 es_ES
dc.description.references Gordo, D. G. M., Espigolan, R., Tonussi, R. L., Júnior, G. A. F., Bresolin, T., Magalhães, A. F. B., … de Albuquerque, L. G. (2016). Genetic parameter estimates for carcass traits and visual scores including or not genomic information1. Journal of Animal Science, 94(5), 1821-1826. doi:10.2527/jas.2015-0134 es_ES
dc.description.references Lee, J., Cheng, H., Garrick, D., Golden, B., Dekkers, J., Park, K., … Fernando, R. (2017). Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-016-0279-9 es_ES
dc.description.references Tsuruta, S., Misztal, I., Aguilar, I., & Lawlor, T. J. (2011). Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. Journal of Dairy Science, 94(8), 4198-4204. doi:10.3168/jds.2011-4256 es_ES
dc.description.references Forni, S., Aguilar, I., & Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-1 es_ES
dc.description.references Xiang, T., Nielsen, B., Su, G., Legarra, A., & Christensen, O. F. (2016). Application of single-step genomic evaluation for crossbred performance in pig1. Journal of Animal Science, 94(3), 936-948. doi:10.2527/jas.2015-9930 es_ES
dc.description.references Chen, C. Y., Misztal, I., Aguilar, I., Legarra, A., & Muir, W. M. (2011). Effect of different genomic relationship matrices on accuracy and scale1. Journal of Animal Science, 89(9), 2673-2679. doi:10.2527/jas.2010-3555 es_ES
dc.description.references Guo, G., Zhao, F., Wang, Y., Zhang, Y., Du, L., & Su, G. (2014). Comparison of single-trait and multiple-trait genomic prediction models. BMC Genetics, 15(1), 30. doi:10.1186/1471-2156-15-30 es_ES
dc.description.references Jia, Y., & Jannink, J.-L. (2012). Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy. Genetics, 192(4), 1513-1522. doi:10.1534/genetics.112.144246 es_ES
dc.description.references Browning, S. R., & Browning, B. L. (2007). Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. The American Journal of Human Genetics, 81(5), 1084-1097. doi:10.1086/521987 es_ES
dc.description.references Aguilar, I., Misztal, I., Legarra, A., & Tsuruta, S. (2011). Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. Journal of Animal Breeding and Genetics, 128(6), 422-428. doi:10.1111/j.1439-0388.2010.00912.x es_ES
dc.description.references VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science, 91(11), 4414-4423. doi:10.3168/jds.2007-0980 es_ES
dc.description.references Saatchi, M., McClure, M. C., McKay, S. D., Rolf, M. M., Kim, J., Decker, J. E., … Taylor, J. F. (2011). Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genetics Selection Evolution, 43(1), 40. doi:10.1186/1297-9686-43-40 es_ES
dc.description.references Lee, S. H., Choi, B. H., Lim, D., Gondro, C., Cho, Y. M., Dang, C. G., … Hong, S. K. (2013). Genome-Wide Association Study Identifies Major Loci for Carcass Weight on BTA14 in Hanwoo (Korean Cattle). PLoS ONE, 8(10), e74677. doi:10.1371/journal.pone.0074677 es_ES
dc.description.references Gordo, D. G. M., Espigolan, R., Bresolin, T., Fernandes Júnior, G. A., Magalhães, A. F. B., Braz, C. U., … Albuquerque, L. G. (2018). Genetic analysis of carcass and meat quality traits in Nelore cattle1. Journal of Animal Science, 96(9), 3558-3564. doi:10.1093/jas/sky228 es_ES
dc.description.references Visscher, P. M., Medland, S. E., Ferreira, M. A. R., Morley, K. I., Zhu, G., Cornes, B. K., … Martin, N. G. (2006). Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings. PLoS Genetics, 2(3), e41. doi:10.1371/journal.pgen.0020041 es_ES
dc.description.references Christensen, O. F., Madsen, P., Nielsen, B., Ostersen, T., & Su, G. (2012). Single-step methods for genomic evaluation in pigs. Animal, 6(10), 1565-1571. doi:10.1017/s1751731112000742 es_ES
dc.description.references Aguilar, I., Misztal, I., Tsuruta, S., Wiggans, G. R., & Lawlor, T. J. (2011). Multiple trait genomic evaluation of conception rate in Holsteins. Journal of Dairy Science, 94(5), 2621-2624. doi:10.3168/jds.2010-3893 es_ES
dc.description.references Baloche, G., Legarra, A., Sallé, G., Larroque, H., Astruc, J.-M., Robert-Granié, C., & Barillet, F. (2014). Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. Journal of Dairy Science, 97(2), 1107-1116. doi:10.3168/jds.2013-7135 es_ES
dc.description.references Lourenco, D. A. L., Tsuruta, S., Fragomeni, B. O., Masuda, Y., Aguilar, I., Legarra, A., … Misztal, I. (2015). Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus1. Journal of Animal Science, 93(6), 2653-2662. doi:10.2527/jas.2014-8836 es_ES
dc.description.references Calus, M. P., & Veerkamp, R. F. (2011). Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-26 es_ES
dc.description.references Jiang, J., Zhang, Q., Ma, L., Li, J., Wang, Z., & Liu, J.-F. (2015). Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. Heredity, 115(1), 29-36. doi:10.1038/hdy.2015.9 es_ES
dc.description.references Ismael, A., Løvendahl, P., Fogh, A., Lund, M. S., & Su, G. (2017). Improving genetic evaluation using a multitrait single-step genomic model for ability to resume cycling after calving, measured by activity tags in Holstein cows. Journal of Dairy Science, 100(10), 8188-8196. doi:10.3168/jds.2017-13122 es_ES
dc.description.references Cheng, H., Kizilkaya, K., Zeng, J., Garrick, D., & Fernando, R. (2018). Genomic Prediction from Multiple-Trait Bayesian Regression Methods Using Mixture Priors. Genetics, 209(1), 89-103. doi:10.1534/genetics.118.300650 es_ES
dc.description.references Kemper, K. E., Bowman, P. J., Hayes, B. J., Visscher, P. M., & Goddard, M. E. (2018). A multi-trait Bayesian method for mapping QTL and genomic prediction. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0377-y es_ES
dc.description.references Goddard, M. E., & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10(6), 381-391. doi:10.1038/nrg2575 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem