- -

Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models

Mostrar el registro completo del ítem

Mehrban, H.; Lee, DH.; Naserkheil, M.; Moradi, MH.; Ibáñez-Escriche, N. (2019). Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models. PLoS ONE. 1-13. https://doi.org/10.1371/journal.pone.0223352

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/134334

Ficheros en el ítem

Metadatos del ítem

Título: Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models
Autor: Mehrban, H. Lee, D. H. Naserkheil, M. Moradi, M. H. Ibáñez-Escriche, Noelia
Entidad UPV: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Fecha difusión:
Resumen:
[EN] Hanwoo, an important indigenous and popular breed of beef cattle in Korea, shows rapid growth and has high meat quality. Its yearling weight (YW) and carcass traits (backfat thickness, carcass weight- CW, eye muscle ...[+]
Derechos de uso: Reconocimiento (by)
Fuente:
PLoS ONE. (issn: 1932-6203 )
DOI: 10.1371/journal.pone.0223352
Editorial:
Public Library of Science
Versión del editor: https://doi.org/10.1371/journal.pone.0223352
Tipo: Artículo

References

Choi, T. J., Alam, M., Cho, C. I., Lee, J. G., Park, B., Kim, S., … Roh, S. H. (2015). Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle1. Journal of Animal Science, 93(4), 1511-1521. doi:10.2527/jas.2014-7953

Choy, Y. H., Park, B. H., Choi, T. J., Choi, J. G., Cho, K. H., Lee, S. S., … Kim, H. S. (2012). Estimation of Relative Economic Weights of Hanwoo Carcass Traits Based on Carcass Market Price. Asian-Australasian Journal of Animal Sciences, 25(12), 1667-1673. doi:10.5713/ajas.2012.12397

Joo, S.-T., Hwang, Y.-H., & Frank, D. (2017). Characteristics of Hanwoo cattle and health implications of consuming highly marbled Hanwoo beef. Meat Science, 132, 45-51. doi:10.1016/j.meatsci.2017.04.262 [+]
Choi, T. J., Alam, M., Cho, C. I., Lee, J. G., Park, B., Kim, S., … Roh, S. H. (2015). Genetic parameters for yearling weight, carcass traits, and primal-cut yields of Hanwoo cattle1. Journal of Animal Science, 93(4), 1511-1521. doi:10.2527/jas.2014-7953

Choy, Y. H., Park, B. H., Choi, T. J., Choi, J. G., Cho, K. H., Lee, S. S., … Kim, H. S. (2012). Estimation of Relative Economic Weights of Hanwoo Carcass Traits Based on Carcass Market Price. Asian-Australasian Journal of Animal Sciences, 25(12), 1667-1673. doi:10.5713/ajas.2012.12397

Joo, S.-T., Hwang, Y.-H., & Frank, D. (2017). Characteristics of Hanwoo cattle and health implications of consuming highly marbled Hanwoo beef. Meat Science, 132, 45-51. doi:10.1016/j.meatsci.2017.04.262

Park, B., Choi, T., Kim, S., & Oh, S.-H. (2013). National Genetic Evaluation (System) of Hanwoo (Korean Native Cattle). Asian-Australasian Journal of Animal Sciences, 26(2), 151-156. doi:10.5713/ajas.2012.12439

Chen, L., Vinsky, M., & Li, C. (2014). Accuracy of predicting genomic breeding values for carcass merit traits in Angus and Charolais beef cattle. Animal Genetics, 46(1), 55-59. doi:10.1111/age.12238

Rolf, M. M., Garrick, D. J., Fountain, T., Ramey, H. R., Weaber, R. L., Decker, J. E., … Taylor, J. F. (2015). Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Genetics Selection Evolution, 47(1). doi:10.1186/s12711-015-0106-8

Mehrban, H., Lee, D. H., Moradi, M. H., IlCho, C., Naserkheil, M., & Ibáñez-Escriche, N. (2017). Predictive performance of genomic selection methods for carcass traits in Hanwoo beef cattle: impacts of the genetic architecture. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-016-0283-0

Misztal, I., Aggrey, S. E., & Muir, W. M. (2013). Experiences with a single-step genome evaluation. Poultry Science, 92(9), 2530-2534. doi:10.3382/ps.2012-02739

Hayes, B. J., Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92(2), 433-443. doi:10.3168/jds.2008-1646

VanRaden, P. M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. (2009). Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92(1), 16-24. doi:10.3168/jds.2008-1514

Misztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 92(9), 4648-4655. doi:10.3168/jds.2009-2064

Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92(9), 4656-4663. doi:10.3168/jds.2009-2061

Aguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93(2), 743-752. doi:10.3168/jds.2009-2730

Ibáñez-Escriche, N., Forni, S., Noguera, J. L., & Varona, L. (2014). Genomic information in pig breeding: Science meets industry needs. Livestock Science, 166, 94-100. doi:10.1016/j.livsci.2014.05.020

Onogi, A., Ogino, A., Komatsu, T., Shoji, N., Simizu, K., Kurogi, K., … Iwata, H. (2014). Genomic prediction in Japanese Black cattle: Application of a single-step approach to beef cattle. Journal of Animal Science, 92(5), 1931-1938. doi:10.2527/jas.2014-7168

Gordo, D. G. M., Espigolan, R., Tonussi, R. L., Júnior, G. A. F., Bresolin, T., Magalhães, A. F. B., … de Albuquerque, L. G. (2016). Genetic parameter estimates for carcass traits and visual scores including or not genomic information1. Journal of Animal Science, 94(5), 1821-1826. doi:10.2527/jas.2015-0134

Lee, J., Cheng, H., Garrick, D., Golden, B., Dekkers, J., Park, K., … Fernando, R. (2017). Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-016-0279-9

Tsuruta, S., Misztal, I., Aguilar, I., & Lawlor, T. J. (2011). Multiple-trait genomic evaluation of linear type traits using genomic and phenotypic data in US Holsteins. Journal of Dairy Science, 94(8), 4198-4204. doi:10.3168/jds.2011-4256

Forni, S., Aguilar, I., & Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-1

Xiang, T., Nielsen, B., Su, G., Legarra, A., & Christensen, O. F. (2016). Application of single-step genomic evaluation for crossbred performance in pig1. Journal of Animal Science, 94(3), 936-948. doi:10.2527/jas.2015-9930

Chen, C. Y., Misztal, I., Aguilar, I., Legarra, A., & Muir, W. M. (2011). Effect of different genomic relationship matrices on accuracy and scale1. Journal of Animal Science, 89(9), 2673-2679. doi:10.2527/jas.2010-3555

Guo, G., Zhao, F., Wang, Y., Zhang, Y., Du, L., & Su, G. (2014). Comparison of single-trait and multiple-trait genomic prediction models. BMC Genetics, 15(1), 30. doi:10.1186/1471-2156-15-30

Jia, Y., & Jannink, J.-L. (2012). Multiple-Trait Genomic Selection Methods Increase Genetic Value Prediction Accuracy. Genetics, 192(4), 1513-1522. doi:10.1534/genetics.112.144246

Browning, S. R., & Browning, B. L. (2007). Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering. The American Journal of Human Genetics, 81(5), 1084-1097. doi:10.1086/521987

Aguilar, I., Misztal, I., Legarra, A., & Tsuruta, S. (2011). Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation. Journal of Animal Breeding and Genetics, 128(6), 422-428. doi:10.1111/j.1439-0388.2010.00912.x

VanRaden, P. M. (2008). Efficient Methods to Compute Genomic Predictions. Journal of Dairy Science, 91(11), 4414-4423. doi:10.3168/jds.2007-0980

Saatchi, M., McClure, M. C., McKay, S. D., Rolf, M. M., Kim, J., Decker, J. E., … Taylor, J. F. (2011). Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation. Genetics Selection Evolution, 43(1), 40. doi:10.1186/1297-9686-43-40

Lee, S. H., Choi, B. H., Lim, D., Gondro, C., Cho, Y. M., Dang, C. G., … Hong, S. K. (2013). Genome-Wide Association Study Identifies Major Loci for Carcass Weight on BTA14 in Hanwoo (Korean Cattle). PLoS ONE, 8(10), e74677. doi:10.1371/journal.pone.0074677

Gordo, D. G. M., Espigolan, R., Bresolin, T., Fernandes Júnior, G. A., Magalhães, A. F. B., Braz, C. U., … Albuquerque, L. G. (2018). Genetic analysis of carcass and meat quality traits in Nelore cattle1. Journal of Animal Science, 96(9), 3558-3564. doi:10.1093/jas/sky228

Visscher, P. M., Medland, S. E., Ferreira, M. A. R., Morley, K. I., Zhu, G., Cornes, B. K., … Martin, N. G. (2006). Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-Descent Sharing between Full Siblings. PLoS Genetics, 2(3), e41. doi:10.1371/journal.pgen.0020041

Christensen, O. F., Madsen, P., Nielsen, B., Ostersen, T., & Su, G. (2012). Single-step methods for genomic evaluation in pigs. Animal, 6(10), 1565-1571. doi:10.1017/s1751731112000742

Aguilar, I., Misztal, I., Tsuruta, S., Wiggans, G. R., & Lawlor, T. J. (2011). Multiple trait genomic evaluation of conception rate in Holsteins. Journal of Dairy Science, 94(5), 2621-2624. doi:10.3168/jds.2010-3893

Baloche, G., Legarra, A., Sallé, G., Larroque, H., Astruc, J.-M., Robert-Granié, C., & Barillet, F. (2014). Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. Journal of Dairy Science, 97(2), 1107-1116. doi:10.3168/jds.2013-7135

Lourenco, D. A. L., Tsuruta, S., Fragomeni, B. O., Masuda, Y., Aguilar, I., Legarra, A., … Misztal, I. (2015). Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus1. Journal of Animal Science, 93(6), 2653-2662. doi:10.2527/jas.2014-8836

Calus, M. P., & Veerkamp, R. F. (2011). Accuracy of multi-trait genomic selection using different methods. Genetics Selection Evolution, 43(1). doi:10.1186/1297-9686-43-26

Jiang, J., Zhang, Q., Ma, L., Li, J., Wang, Z., & Liu, J.-F. (2015). Joint prediction of multiple quantitative traits using a Bayesian multivariate antedependence model. Heredity, 115(1), 29-36. doi:10.1038/hdy.2015.9

Ismael, A., Løvendahl, P., Fogh, A., Lund, M. S., & Su, G. (2017). Improving genetic evaluation using a multitrait single-step genomic model for ability to resume cycling after calving, measured by activity tags in Holstein cows. Journal of Dairy Science, 100(10), 8188-8196. doi:10.3168/jds.2017-13122

Cheng, H., Kizilkaya, K., Zeng, J., Garrick, D., & Fernando, R. (2018). Genomic Prediction from Multiple-Trait Bayesian Regression Methods Using Mixture Priors. Genetics, 209(1), 89-103. doi:10.1534/genetics.118.300650

Kemper, K. E., Bowman, P. J., Hayes, B. J., Visscher, P. M., & Goddard, M. E. (2018). A multi-trait Bayesian method for mapping QTL and genomic prediction. Genetics Selection Evolution, 50(1). doi:10.1186/s12711-018-0377-y

Goddard, M. E., & Hayes, B. J. (2009). Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Reviews Genetics, 10(6), 381-391. doi:10.1038/nrg2575

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem