Mostrar el registro sencillo del ítem
dc.contributor.author | Millán Verdú, Carlos | es_ES |
dc.contributor.author | Santonja Moltó, Mª Del Carmen | es_ES |
dc.contributor.author | Domingo Beltran, Manuel | es_ES |
dc.contributor.author | Luna Molina, Ramón | es_ES |
dc.contributor.author | Satorre, M. Á. | es_ES |
dc.date.accessioned | 2020-01-22T21:02:40Z | |
dc.date.available | 2020-01-22T21:02:40Z | |
dc.date.issued | 2019 | es_ES |
dc.identifier.issn | 0004-6361 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/135416 | |
dc.description.abstract | [EN] Aims. The effective medium approximations (EMAs), or the Lorentz-Lorenz, Maxwell-Garnett, and Bruggeman models, largely used to obtain optical properties and porosities of pure and ice mixtures, have been experimentally tested in this work. The efficiency of these approximations has been studied by obtaining the porosity value for carbon dioxide ice grown at low temperatures. An explanation of the behaviour of the experimental results for all temperatures is given. The analysis carried out for CO2 can be applied to other molecules. Methods. An optical laser interference technique was carried out using two laser beams falling on a growing film of ice at different incident angles which allowed us to determine the refractive index and the thickness of the film. The mass deposited is recorded by means of a quartz crystal microbalance. Porosity is determined from its equational definition by using the experimental density previously obtained. Results. From the experimental results of the refractive index and density, porosity values for carbon dioxide ice films grown on a cold surface at different temperatures of deposition have been calculated and compared with the results obtained from the EMA equations, and with recent experimental results. Conclusion. The values of porosity obtained with the EMA models and experimentally, show similar trends. However, theoretical values overestimate the experimental results. We can conclude that using the EMAs to obtain this parameter from an ice mixture must be carefully considered and, if possible, an alternative experimental procedure that allows comparisons to be made should be used. | es_ES |
dc.description.sponsorship | Funds have been provided for this research by the Spanish MINECO, Project FIS2016-77726-C3-3-P. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | EDP Sciences | es_ES |
dc.relation.ispartof | Astronomy and Astrophysics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Astrochemistry | es_ES |
dc.subject | Methods: laboratory: solid state | es_ES |
dc.subject | ISM: molecules | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | An experimental test for effective medium approximations (EMAs) Porosity determination for ices of astrophysical interest | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1051/0004-6361/201935153 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FIS2016-77726-C3-3-P/ES/ICE, GAS AND DUST IN LABORATORY ASTROPHYSICS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Millán Verdú, C.; Santonja Moltó, MDC.; Domingo Beltran, M.; Luna Molina, R.; Satorre, MÁ. (2019). An experimental test for effective medium approximations (EMAs) Porosity determination for ices of astrophysical interest. Astronomy and Astrophysics. 628(A63):1-5. https://doi.org/10.1051/0004-6361/201935153 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1051/0004-6361/201935153 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 5 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 628 | es_ES |
dc.description.issue | A63 | es_ES |
dc.relation.pasarela | S\400551 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. (2008). Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores. The Astrophysical Journal, 674(2), 984-996. doi:10.1086/524096 | es_ES |
dc.description.references | Bartels-Rausch, T., Bergeron, V., Cartwright, J. H. E., Escribano, R., Finney, J. L., Grothe, H., … Uras-Aytemiz, N. (2012). Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 84(2), 885-944. doi:10.1103/revmodphys.84.885 | es_ES |
dc.description.references | Born M., & Wolf E. 1999, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press) | es_ES |
dc.description.references | Bossa, J.-B., Isokoski, K., Paardekooper, D. M., Bonnin, M., van der Linden, E. P., Triemstra, T., … Linnartz, H. (2014). Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations. Astronomy & Astrophysics, 561, A136. doi:10.1051/0004-6361/201322549 | es_ES |
dc.description.references | Brovchenko, I., & Oleinikova, A. (2006). Four phases of amorphous water: Simulations versus experiment. The Journal of Chemical Physics, 124(16), 164505. doi:10.1063/1.2194906 | es_ES |
dc.description.references | Cazaux, S., Bossa, J.-B., Linnartz, H., & Tielens, A. G. G. M. (2014). Pore evolution in interstellar ice analogues. Astronomy & Astrophysics, 573, A16. doi:10.1051/0004-6361/201424466 | es_ES |
dc.description.references | Isokoski, K., Bossa, J.-B., Triemstra, T., & Linnartz, H. (2014). Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices. Physical Chemistry Chemical Physics, 16(8), 3456. doi:10.1039/c3cp54481h | es_ES |
dc.description.references | Keane, J. V., Boogert, A. C. A., Tielens, A. G. G. M., Ehrenfreund, P., & Schutte, W. A. (2001). Bands of solid CO$_\mathsf{2}$ in the 2-3μm spectrum of S 140:IRS1. Astronomy & Astrophysics, 375(3), L43-L46. doi:10.1051/0004-6361:20010977 | es_ES |
dc.description.references | Loeffler, M. J., Moore, M. H., & Gerakines, P. A. (2016). THE EFFECTS OF EXPERIMENTAL CONDITIONS ON THE REFRACTIVE INDEX AND DENSITY OF LOW-TEMPERATURE ICES: SOLID CARBON DIOXIDE. The Astrophysical Journal, 827(2), 98. doi:10.3847/0004-637x/827/2/98 | es_ES |
dc.description.references | Lorentz, H. A. (1880). Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Annalen der Physik und Chemie, 245(4), 641-665. doi:10.1002/andp.18802450406 | es_ES |
dc.description.references | Lorenz, L. (1880). Ueber die Refractionsconstante. Annalen der Physik und Chemie, 247(9), 70-103. doi:10.1002/andp.18802470905 | es_ES |
dc.description.references | Luna, R., Millán, C., Domingo, M., & Satorre, M. Á. (2008). Thermal desorption of CH4 retained in CO2 ice. Astrophysics and Space Science, 314(1-3), 113-119. doi:10.1007/s10509-008-9746-2 | es_ES |
dc.description.references | Markel, V. A. (2016). Introduction to the Maxwell Garnett approximation: tutorial. Journal of the Optical Society of America A, 33(7), 1244. doi:10.1364/josaa.33.001244 | es_ES |
dc.description.references | Markel, V. A. (2016). Maxwell Garnett approximation (advanced topics): tutorial. Journal of the Optical Society of America A, 33(11), 2237. doi:10.1364/josaa.33.002237 | es_ES |
dc.description.references | XII. Colours in metal glasses and in metallic films. (1904). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203(359-371), 385-420. doi:10.1098/rsta.1904.0024 | es_ES |
dc.description.references | VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II. (1906). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 205(387-401), 237-288. doi:10.1098/rsta.1906.0007 | es_ES |
dc.description.references | Palumbo, M. E., Baratta, G. A., Leto, G., & Strazzulla, G. (2010). H bonds in astrophysical ices. Journal of Molecular Structure, 972(1-3), 64-67. doi:10.1016/j.molstruc.2009.12.017 | es_ES |
dc.description.references | Rodgers, S. D., & Charnley, S. B. (2003). Chemical Evolution in Protostellar Envelopes: Cocoon Chemistry. The Astrophysical Journal, 585(1), 355-371. doi:10.1086/345497 | es_ES |
dc.description.references | Rowland, B., Fisher, M., & Devlin, J. P. (1991). Probing icy surfaces with the dangling‐OH‐mode absorption: Large ice clusters and microporous amorphous ice. The Journal of Chemical Physics, 95(2), 1378-1384. doi:10.1063/1.461119 | es_ES |
dc.description.references | Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015 | es_ES |
dc.description.references | Satorre M., Luna R., Millán C., Domingo M., & Santonja C. 2018, in Astrophys. Space Sci. Lib., eds. Muñoz Caro G. M., & Escribano R., 451, 51 | es_ES |
dc.description.references | Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 | es_ES |
dc.description.references | Schulze, W., & Abe, H. (1980). Density, refractive index and sorption capacity of solid CO2 layers. Chemical Physics, 52(3), 381-388. doi:10.1016/0301-0104(80)85240-2 | es_ES |
dc.description.references | Stroud, D. (1998). The effective medium approximations: Some recent developments. Superlattices and Microstructures, 23(3-4), 567-573. doi:10.1006/spmi.1997.0524 | es_ES |
dc.description.references | Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., & Williams, D. A. (2004). Evaporation of ices near massive stars: models based on laboratory temperature programmed desorption data. Monthly Notices of the Royal Astronomical Society, 354(4), 1141-1145. doi:10.1111/j.1365-2966.2004.08273.x | es_ES |
dc.description.references | Warren, S. G. (1986). Optical constants of carbon dioxide ice. Applied Optics, 25(16), 2650. doi:10.1364/ao.25.002650 | es_ES |
dc.description.references | Westley, M. S., Baratta, G. A., & Baragiola, R. A. (1998). Density and index of refraction of water ice films vapor deposited at low temperatures. The Journal of Chemical Physics, 108(8), 3321-3326. doi:10.1063/1.475730 | es_ES |