Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. (2008). Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores. The Astrophysical Journal, 674(2), 984-996. doi:10.1086/524096
Bartels-Rausch, T., Bergeron, V., Cartwright, J. H. E., Escribano, R., Finney, J. L., Grothe, H., … Uras-Aytemiz, N. (2012). Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 84(2), 885-944. doi:10.1103/revmodphys.84.885
Born M., & Wolf E. 1999, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)
[+]
Aikawa, Y., Wakelam, V., Garrod, R. T., & Herbst, E. (2008). Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores. The Astrophysical Journal, 674(2), 984-996. doi:10.1086/524096
Bartels-Rausch, T., Bergeron, V., Cartwright, J. H. E., Escribano, R., Finney, J. L., Grothe, H., … Uras-Aytemiz, N. (2012). Ice structures, patterns, and processes: A view across the icefields. Reviews of Modern Physics, 84(2), 885-944. doi:10.1103/revmodphys.84.885
Born M., & Wolf E. 1999, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)
Bossa, J.-B., Isokoski, K., Paardekooper, D. M., Bonnin, M., van der Linden, E. P., Triemstra, T., … Linnartz, H. (2014). Porosity measurements of interstellar ice mixtures using optical laser interference and extended effective medium approximations. Astronomy & Astrophysics, 561, A136. doi:10.1051/0004-6361/201322549
Brovchenko, I., & Oleinikova, A. (2006). Four phases of amorphous water: Simulations versus experiment. The Journal of Chemical Physics, 124(16), 164505. doi:10.1063/1.2194906
Cazaux, S., Bossa, J.-B., Linnartz, H., & Tielens, A. G. G. M. (2014). Pore evolution in interstellar ice analogues. Astronomy & Astrophysics, 573, A16. doi:10.1051/0004-6361/201424466
Isokoski, K., Bossa, J.-B., Triemstra, T., & Linnartz, H. (2014). Porosity and thermal collapse measurements of H2O, CH3OH, CO2, and H2O:CO2 ices. Physical Chemistry Chemical Physics, 16(8), 3456. doi:10.1039/c3cp54481h
Keane, J. V., Boogert, A. C. A., Tielens, A. G. G. M., Ehrenfreund, P., & Schutte, W. A. (2001). Bands of solid CO$_\mathsf{2}$ in the 2-3μm spectrum of S 140:IRS1. Astronomy & Astrophysics, 375(3), L43-L46. doi:10.1051/0004-6361:20010977
Loeffler, M. J., Moore, M. H., & Gerakines, P. A. (2016). THE EFFECTS OF EXPERIMENTAL CONDITIONS ON THE REFRACTIVE INDEX AND DENSITY OF LOW-TEMPERATURE ICES: SOLID CARBON DIOXIDE. The Astrophysical Journal, 827(2), 98. doi:10.3847/0004-637x/827/2/98
Lorentz, H. A. (1880). Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Annalen der Physik und Chemie, 245(4), 641-665. doi:10.1002/andp.18802450406
Lorenz, L. (1880). Ueber die Refractionsconstante. Annalen der Physik und Chemie, 247(9), 70-103. doi:10.1002/andp.18802470905
Luna, R., Millán, C., Domingo, M., & Satorre, M. Á. (2008). Thermal desorption of CH4 retained in CO2 ice. Astrophysics and Space Science, 314(1-3), 113-119. doi:10.1007/s10509-008-9746-2
Markel, V. A. (2016). Introduction to the Maxwell Garnett approximation: tutorial. Journal of the Optical Society of America A, 33(7), 1244. doi:10.1364/josaa.33.001244
Markel, V. A. (2016). Maxwell Garnett approximation (advanced topics): tutorial. Journal of the Optical Society of America A, 33(11), 2237. doi:10.1364/josaa.33.002237
XII. Colours in metal glasses and in metallic films. (1904). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 203(359-371), 385-420. doi:10.1098/rsta.1904.0024
VII. Colours in metal glasses, in metallic films, and in metallic solutions.—II. (1906). Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 205(387-401), 237-288. doi:10.1098/rsta.1906.0007
Palumbo, M. E., Baratta, G. A., Leto, G., & Strazzulla, G. (2010). H bonds in astrophysical ices. Journal of Molecular Structure, 972(1-3), 64-67. doi:10.1016/j.molstruc.2009.12.017
Rodgers, S. D., & Charnley, S. B. (2003). Chemical Evolution in Protostellar Envelopes: Cocoon Chemistry. The Astrophysical Journal, 585(1), 355-371. doi:10.1086/345497
Rowland, B., Fisher, M., & Devlin, J. P. (1991). Probing icy surfaces with the dangling‐OH‐mode absorption: Large ice clusters and microporous amorphous ice. The Journal of Chemical Physics, 95(2), 1378-1384. doi:10.1063/1.461119
Satorre, M. Á., Domingo, M., Millán, C., Luna, R., Vilaplana, R., & Santonja, C. (2008). Density of , and ices at different temperatures of deposition. Planetary and Space Science, 56(13), 1748-1752. doi:10.1016/j.pss.2008.07.015
Satorre M., Luna R., Millán C., Domingo M., & Santonja C. 2018, in Astrophys. Space Sci. Lib., eds. Muñoz Caro G. M., & Escribano R., 451, 51
Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937
Schulze, W., & Abe, H. (1980). Density, refractive index and sorption capacity of solid CO2 layers. Chemical Physics, 52(3), 381-388. doi:10.1016/0301-0104(80)85240-2
Stroud, D. (1998). The effective medium approximations: Some recent developments. Superlattices and Microstructures, 23(3-4), 567-573. doi:10.1006/spmi.1997.0524
Viti, S., Collings, M. P., Dever, J. W., McCoustra, M. R. S., & Williams, D. A. (2004). Evaporation of ices near massive stars: models based on laboratory temperature programmed desorption data. Monthly Notices of the Royal Astronomical Society, 354(4), 1141-1145. doi:10.1111/j.1365-2966.2004.08273.x
Warren, S. G. (1986). Optical constants of carbon dioxide ice. Applied Optics, 25(16), 2650. doi:10.1364/ao.25.002650
Westley, M. S., Baratta, G. A., & Baragiola, R. A. (1998). Density and index of refraction of water ice films vapor deposited at low temperatures. The Journal of Chemical Physics, 108(8), 3321-3326. doi:10.1063/1.475730
[-]