- -

Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures

Show full item record

Cuesta Frau, D.; Miró Martínez, P.; Oltra Crespo, S.; Jordán Núñez, J.; Vargas-Rojo, B.; González, P.; Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy. 20(11):1-18. https://doi.org/10.3390/e20110853

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/135622

Files in this item

Item Metadata

Title: Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures
Author:
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat
Issued date:
Abstract:
[EN] Many entropy-related methods for signal classification have been proposed and exploited successfully in the last several decades. However, it is sometimes difficult to find the optimal measure and the optimal parameter ...[+]
Subjects: Permutation entropy , Sample entropy , Approximate entropy , Logistic regression , Body temperature , Signal classification
Copyrigths: Reconocimiento (by)
Source:
Entropy. (issn: 1099-4300 )
DOI: 10.3390/e20110853
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/e20110853
Type: Artículo

This item appears in the following Collection(s)

Show full item record