- -

Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cuesta Frau, David es_ES
dc.contributor.author Miró Martínez, Pau es_ES
dc.contributor.author Oltra Crespo, Sandra es_ES
dc.contributor.author Jordán Núñez, Jorge es_ES
dc.contributor.author Vargas-Rojo, B. es_ES
dc.contributor.author González, Paula es_ES
dc.contributor.author Varela-Entrecanales, Manuel es_ES
dc.date.accessioned 2020-01-26T21:02:03Z
dc.date.available 2020-01-26T21:02:03Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1099-4300 es_ES
dc.identifier.uri http://hdl.handle.net/10251/135622
dc.description.abstract [EN] Many entropy-related methods for signal classification have been proposed and exploited successfully in the last several decades. However, it is sometimes difficult to find the optimal measure and the optimal parameter configuration for a specific purpose or context. Suboptimal settings may therefore produce subpar results and not even reach the desired level of significance. In order to increase the signal classification accuracy in these suboptimal situations, this paper proposes statistical models created with uncorrelated measures that exploit the possible synergies between them. The methods employed are permutation entropy (PE), approximate entropy (ApEn), and sample entropy (SampEn). Since PE is based on subpattern ordinal differences, whereas ApEn and SampEn are based on subpattern amplitude differences, we hypothesized that a combination of PE with another method would enhance the individual performance of any of them. The dataset was composed of body temperature records, for which we did not obtain a classification accuracy above 80% with a single measure, in this study or even in previous studies. The results confirmed that the classification accuracy rose up to 90% when combining PE and ApEn with a logistic model. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Entropy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Permutation entropy es_ES
dc.subject Sample entropy es_ES
dc.subject Approximate entropy es_ES
dc.subject Logistic regression es_ES
dc.subject Body temperature es_ES
dc.subject Signal classification es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/e20110853 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat es_ES
dc.description.bibliographicCitation Cuesta Frau, D.; Miró Martínez, P.; Oltra Crespo, S.; Jordán Núñez, J.; Vargas-Rojo, B.; González, P.; Varela-Entrecanales, M. (2018). Model Selection for Body Temperature Signal Classification Using Both Amplitude and Ordinality-Based Entropy Measures. Entropy. 20(11):1-18. https://doi.org/10.3390/e20110853 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/e20110853 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\371847 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem