- -

Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images

Mostrar el registro completo del ítem

Pons Suñer, P.; Noorda, R.; Nevárez, A.; Colomer, A.; Pons Beltrán, V.; Naranjo, V. (2019). Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images. En Lecture Notes in Artificial Intelligence. Springer. 105-113. https://doi.org/10.1007/978-3-030-33617-2_12

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136058

Ficheros en el ítem

Metadatos del ítem

Título: Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images
Autor: Pons Suñer, Pedro Noorda, Reinier Nevárez, Andrea Colomer, Adrián Pons Beltrán, Vicente Naranjo, Valery
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Fecha difusión:
Resumen:
Wireless Capsule Endoscopy is a technique that allows for observation of the entire gastrointestinal tract in an easy and non-invasive way. However, its greatest limitation lies in the time required to analyze the large ...[+]
Palabras clave: Wireless Capsule Endoscopy , Blood detection , Machine Learning , Hand-crafted feature , Deep Learning , Convolutional neural network
Derechos de uso: Reserva de todos los derechos
ISBN: 978-3-030-33616-5
Fuente:
Lecture Notes in Artificial Intelligence. (issn: 0302-9743 )
DOI: 10.1007/978-3-030-33617-2_12
Editorial:
Springer
Versión del editor: https://doi.org/10.1007/978-3-030-33617-2_12
Título del congreso: International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
Lugar del congreso: Manchester, UK
Fecha congreso: Noviembre 14-16,2019
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/675353/EU/Wireless In-Body Environment/
Agradecimientos:
This work was funded by the European Unions H2020: MSCA: ITN program for the “Wireless In-body Environment Communication WiBEC” project under the grant agreement no. 675353. Additionally, we gratefully acknowledge the ...[+]
Tipo: Capítulo de libro Comunicación en congreso

References

Berens, J., Finlayson, G.D., Qiu, G.: Image indexing using compressed colour histograms. IEE Proc. Vis., Image Signal Process. 147(4), 349–355 (2000). https://doi.org/10.1049/ip-vis:20000630

Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

Buscaglia, J.M., et al.: Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6(3), 298–301 (2008). https://doi.org/10.1016/j.cgh.2007.12.029 [+]
Berens, J., Finlayson, G.D., Qiu, G.: Image indexing using compressed colour histograms. IEE Proc. Vis., Image Signal Process. 147(4), 349–355 (2000). https://doi.org/10.1049/ip-vis:20000630

Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

Buscaglia, J.M., et al.: Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6(3), 298–301 (2008). https://doi.org/10.1016/j.cgh.2007.12.029

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

Li, B., Meng, M.Q.H.: Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans. Biomed. Eng. 56(4), 1032–1039 (2009). https://doi.org/10.1109/TBME.2008.2010526

Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015). https://doi.org/10.1109/TIP.2015.2451011

Novozámskỳ, A., Flusser, J., Tachecí, I., Sulík, L., Bureš, J., Krejcar, O.: Automatic blood detection in capsule endoscopy video. J. Biomed. Opt. 21(12), 126007 (2016). https://doi.org/10.1117/1.JBO.21.12.126007

Signorelli, C., Villa, F., Rondonotti, E., Abbiati, C., Beccari, G., de Franchis, R.: Sensitivity and specificity of the suspected blood identification system in video capsule enteroscopy. Endoscopy 37(12), 1170–1173 (2005). https://doi.org/10.1055/s-2005-870410

Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 7(1), 91 (2006). https://doi.org/10.1186/1471-2105-7-91

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem