- -

Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pons Suñer, Pedro es_ES
dc.contributor.author Noorda, Reinier es_ES
dc.contributor.author Nevárez, Andrea es_ES
dc.contributor.author Colomer, Adrián es_ES
dc.contributor.author Pons Beltrán, Vicente es_ES
dc.contributor.author Naranjo, Valery es_ES
dc.date.accessioned 2020-01-30T08:32:55Z
dc.date.available 2020-01-30T08:32:55Z
dc.date.issued 2019-10-18
dc.identifier.isbn 978-3-030-33616-5
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10251/136058
dc.description.abstract Wireless Capsule Endoscopy is a technique that allows for observation of the entire gastrointestinal tract in an easy and non-invasive way. However, its greatest limitation lies in the time required to analyze the large number of images generated in each examination for diagnosis, which is about 2 hours. This causes not only a high cost, but also a high probability of a wrong diagnosis due to the physician’s fatigue, while the variable appearance of abnormalities requires continuous concentration. In this work, we designed and developed a system capable of automatically detecting blood based on classification of extracted regions, following two different classification approaches. The first method consisted in extraction of hand-crafted features that were used to train machine learning algorithms, specifically Support Vector Machines and Random Forest, to create models for classifying images as healthy tissue or blood. The second method consisted in applying deep learning techniques, concretely convolutional neural networks, capable of extracting the relevant features of the image by themselves. The best results (95.7% sensitivity and 92.3% specificity) were obtained for a Random Forest model trained with features extracted from the histograms of the three HSV color space channels. For both methods we extracted square patches of several sizes using a sliding window, while for the first approach we also implemented the waterpixels technique in order to improve the classification results es_ES
dc.description.sponsorship This work was funded by the European Unions H2020: MSCA: ITN program for the “Wireless In-body Environment Communication WiBEC” project under the grant agreement no. 675353. Additionally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan V GPU used for this research. es_ES
dc.format.extent 8 es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Lecture Notes in Artificial Intelligence
dc.rights Reserva de todos los derechos es_ES
dc.subject Wireless Capsule Endoscopy es_ES
dc.subject Blood detection es_ES
dc.subject Machine Learning es_ES
dc.subject Hand-crafted feature es_ES
dc.subject Deep Learning es_ES
dc.subject Convolutional neural network es_ES
dc.title Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1007/978-3-030-33617-2_12
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/675353/EU/Wireless In-Body Environment/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Pons Suñer, P.; Noorda, R.; Nevárez, A.; Colomer, A.; Pons Beltrán, V.; Naranjo, V. (2019). Design and Development of an Automatic Blood Detection System for Capsule Endoscopy Images. En Lecture Notes in Artificial Intelligence. Springer. 105-113. https://doi.org/10.1007/978-3-030-33617-2_12 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename International Conference on Intelligent Data Engineering and Automated Learning (IDEAL) es_ES
dc.relation.conferencedate Noviembre 14-16,2019 es_ES
dc.relation.conferenceplace Manchester, UK es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-030-33617-2_12 es_ES
dc.description.upvformatpinicio 105 es_ES
dc.description.upvformatpfin 113 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela S\397467 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Berens, J., Finlayson, G.D., Qiu, G.: Image indexing using compressed colour histograms. IEE Proc. Vis., Image Signal Process. 147(4), 349–355 (2000). https://doi.org/10.1049/ip-vis:20000630 es_ES
dc.description.references Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324 es_ES
dc.description.references Buscaglia, J.M., et al.: Performance characteristics of the suspected blood indicator feature in capsule endoscopy according to indication for study. Clin. Gastroenterol. Hepatol. 6(3), 298–301 (2008). https://doi.org/10.1016/j.cgh.2007.12.029 es_ES
dc.description.references Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018 es_ES
dc.description.references Li, B., Meng, M.Q.H.: Computer-aided detection of bleeding regions for capsule endoscopy images. IEEE Trans. Biomed. Eng. 56(4), 1032–1039 (2009). https://doi.org/10.1109/TBME.2008.2010526 es_ES
dc.description.references Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015). https://doi.org/10.1109/TIP.2015.2451011 es_ES
dc.description.references Novozámskỳ, A., Flusser, J., Tachecí, I., Sulík, L., Bureš, J., Krejcar, O.: Automatic blood detection in capsule endoscopy video. J. Biomed. Opt. 21(12), 126007 (2016). https://doi.org/10.1117/1.JBO.21.12.126007 es_ES
dc.description.references Signorelli, C., Villa, F., Rondonotti, E., Abbiati, C., Beccari, G., de Franchis, R.: Sensitivity and specificity of the suspected blood identification system in video capsule enteroscopy. Endoscopy 37(12), 1170–1173 (2005). https://doi.org/10.1055/s-2005-870410 es_ES
dc.description.references Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) es_ES
dc.description.references Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 7(1), 91 (2006). https://doi.org/10.1186/1471-2105-7-91 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem