Mostrar el registro sencillo del ítem
dc.contributor.author | Figás-Moreno, María Del Rosario | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Raigón Jiménez, Mª Dolores | es_ES |
dc.contributor.author | Pereira-Días, Leandro | es_ES |
dc.contributor.author | Casanova-Calancha, Cristina | es_ES |
dc.contributor.author | García-Martínez, María Dolores | es_ES |
dc.contributor.author | Rosa-Martínez, Elena | es_ES |
dc.contributor.author | Soler-Calabuig, Elena | es_ES |
dc.contributor.author | Plazas Ávila, María de la O | es_ES |
dc.contributor.author | Soler Aleixandre, Salvador | es_ES |
dc.date.accessioned | 2020-02-01T21:00:55Z | |
dc.date.available | 2020-02-01T21:00:55Z | |
dc.date.issued | 2018 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/136160 | |
dc.description.abstract | [EN] Long shelf-life tomato (Solanum lycopersicum) landraces, characterized by carrying the alc allele in the NOR. NAC locus, have been traditionally cultivated in the Mediterranean region. These materials are adapted to open field conditions under low input conditions. However, cultivation under greenhouse is expanding fueled by increasing demand of these traditional tomatoes. We hypothesize that the large diversity in the long shelf-life landraces and derived materials can be exploited for adaptation to these new cultivation conditions. We have evaluated 12 varieties (seven landraces, three selections and two hybrids) carrying the alc mutation under open field (OF) and greenhouse (GH) cultivation, and evaluated them for 52 morphological, agronomic, chemical properties, and chemical composition descriptors. All descriptors, except six morphological ones, were variable. The variety effect was the greatest contributor to variation for most morphological traits, as well as for fruit weight, fruit shape, dry matter, and soluble solids content. However, significant environmental and genotype x environment interaction were found for 36 and 42 descriptors, respectively. Fruits from GH plants had lower weight and firmness and were less red than those from OF. On average, in GH yield was 35% lower and daily fruit weight loss in post-harvest 41% higher than in OF. However, fruits from GH had on average higher dry matter and soluble solids contents, antioxidant activity, glucose, fructose, and ascorbic acid concentrations, but lower contents in lycopene and beta-carotene than those from OF. A principal components analysis clearly separated varieties according to the cultivation environment. However, the distribution pattern of varieties within each of the two clusters (GH and OF) was similar, despite the strong G x E interaction for many descriptors. Landraces from the same origin plotted in the same area of each cluster, and selections and hybrids plotted together with the landraces. The results reveal a high impact of the cultivation environment on morphological, agronomic, chemical properties, and chemical composition of Mediterranean long shelf-life traditional tomato varieties. This suggests that breeding programs specifically focused to adaptation to greenhouse conditions should be developed. | es_ES |
dc.description.sponsorship | This work was supported by Associacio de Productors i Comercialitzadors de la Tomata de Penjar d'Alcala de Xivert. Funding was also received from the TRADITOM (Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population), G2P-SOL (Linking genetic resources, genomes, and phenotypes of Solanaceous crops) and BRESOV (Breeding for resilient, efficient, and sustainable organic vegetable production) projects. TRADITOM, G2P-SOL, and BRESOV projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 634561 (TRADITOM), 677379 (G2PSOL), and 774244 (BRESOV). ER is grateful to the Spanish Ministerio de Economia, Industria y Competitividad for a pre-doctoral grant (BES-2016-077482). MP is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva programme (FCJI-2015-24835) and to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral contract (APOSTD/2018/014). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Breeding | es_ES |
dc.subject | Cultivation conditions | es_ES |
dc.subject | Fruit quality | es_ES |
dc.subject | Genotype x environment interaction | es_ES |
dc.subject | Selection | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Yield | es_ES |
dc.subject.classification | EDAFOLOGIA Y QUIMICA AGRICOLA | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2018.01774 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//FJCI-2015-24835/ES/FJCI-2015-24835/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2016-077482/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/774244/EU/Breeding for Resilient, Efficient and Sustainable Organic Vegetable production/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana | es_ES |
dc.description.bibliographicCitation | Figás-Moreno, MDR.; Prohens Tomás, J.; Raigón Jiménez, MD.; Pereira-Días, L.; Casanova-Calancha, C.; García-Martínez, MD.; Rosa-Martínez, E.... (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.01774 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2018.01774 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.relation.pasarela | S\380902 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-x | es_ES |
dc.description.references | Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524 | es_ES |
dc.description.references | Ballester, A.-R., Molthoff, J., de Vos, R., Hekkert, B. te L., Orzaez, D., Fernández-Moreno, J.-P., … Bovy, A. (2009). Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiology, 152(1), 71-84. doi:10.1104/pp.109.147322 | es_ES |
dc.description.references | Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Critical Reviews in Food Science and Nutrition, 50(5), 369-389. doi:10.1080/10408391003626322 | es_ES |
dc.description.references | Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. doi:10.1016/j.postharvbio.2011.05.016 | es_ES |
dc.description.references | Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3 | es_ES |
dc.description.references | Cano, A., Acosta, M., & Arnao, M. B. (2003). Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 28(1), 59-65. doi:10.1016/s0925-5214(02)00141-2 | es_ES |
dc.description.references | Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311 | es_ES |
dc.description.references | Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6 | es_ES |
dc.description.references | Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6 | es_ES |
dc.description.references | Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044 | es_ES |
dc.description.references | Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014 | es_ES |
dc.description.references | Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322 | es_ES |
dc.description.references | Csizinszky, A. A. (s. f.). Production in the open field. Tomatoes, 237-256. doi:10.1079/9780851993966.0237 | es_ES |
dc.description.references | Diamanti, J., Battino, M., & Mezzetti, B. (2011). Breeding for Fruit Nutritional and Nutraceutical Quality. Breeding for Fruit Quality, 61-79. doi:10.1002/9780470959350.ch3 | es_ES |
dc.description.references | Dumas, Y., Leoni, C., Portas, C. A. M., & Bièche, B. (1994). INFLUENCE OF WATER AND NITROGEN AVAILABILITY ON YIELD AND QUALITY OF PROCESSING TOMATO IN THE EUROPEAN UNION COUNTRIES. Acta Horticulturae, (376), 185-192. doi:10.17660/actahortic.1994.376.23 | es_ES |
dc.description.references | El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. doi:10.1016/j.scienta.2014.01.010 | es_ES |
dc.description.references | FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861 | es_ES |
dc.description.references | Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562-571. doi:10.1016/j.scienta.2009.06.026 | es_ES |
dc.description.references | Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039 | es_ES |
dc.description.references | Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2014). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. doi:10.1007/s10722-014-0142-1 | es_ES |
dc.description.references | Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083 | es_ES |
dc.description.references | Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., & Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. doi:10.1016/j.scienta.2018.01.045 | es_ES |
dc.description.references | Galiana-Balaguer, L., Roselló, S., & Nuez, F. (2006). Characterization and Selection of Balanced Sources of Variability for Breeding Tomato (Lycopersicon) Internal Quality. Genetic Resources and Crop Evolution, 53(5), 907-923. doi:10.1007/s10722-004-6696-6 | es_ES |
dc.description.references | Hounsome, N., Hounsome, B., Tomos, D., & Edwards-Jones, G. (2008). Plant Metabolites and Nutritional Quality of Vegetables. Journal of Food Science, 73(4), R48-R65. doi:10.1111/j.1750-3841.2008.00716.x | es_ES |
dc.description.references | Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41(2), 151-155. doi:10.1016/j.postharvbio.2006.03.008 | es_ES |
dc.description.references | Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464 | es_ES |
dc.description.references | Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205 | es_ES |
dc.description.references | Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463-469. doi:10.1016/j.scienta.2017.09.046 | es_ES |
dc.description.references | Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-y | es_ES |
dc.description.references | Mercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5 | es_ES |
dc.description.references | Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017 | es_ES |
dc.description.references | Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352 | es_ES |
dc.description.references | Ortiz, R., Crossa, J., Vargas, M., & Izquierdo, J. (2006). Studying the effect of environmental variables on the genotype × environment interaction of tomato. Euphytica, 153(1-2), 119-134. doi:10.1007/s10681-006-9248-7 | es_ES |
dc.description.references | Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., … Flôres, S. H. (2017). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. doi:10.1111/jfpp.13326 | es_ES |
dc.description.references | Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1 | es_ES |
dc.description.references | Pascual, B., Maroto, J. V., Sanbautista, A., López-Galarza, S., & Alagarda, J. (2000). Influence of watering on the yield and cracking of cherry, fresh-market and processing tomatoes. The Journal of Horticultural Science and Biotechnology, 75(2), 171-175. doi:10.1080/14620316.2000.11511218 | es_ES |
dc.description.references | Peet, M. M., & Welles, G. (s. f.). Greenhouse tomato production. Tomatoes, 257-304. doi:10.1079/9780851993966.0257 | es_ES |
dc.description.references | Rick, C. M. (1967). Fruit and pedicel characters derived from Galápagos Tomatoes’. Economic Botany, 21(2), 171-184. doi:10.1007/bf02897867 | es_ES |
dc.description.references | RodrÍGuez-Burruezo, S., Prohens, J., RosellÓ, J., & Nuez, F. (2005). «Heirloom» varieties as sources of variation for the improvement of fruit quality in greenhouse-grown tomatoes. The Journal of Horticultural Science and Biotechnology, 80(4), 453-460. doi:10.1080/14620316.2005.11511959 | es_ES |
dc.description.references | Romero del Castillo, R., Puig-Pey, M., Biarnés, J., Vilaseca, H., Simó, J., Plans, M., … Casañas, F. (2014). Using Trendsetting Chefs to Design New Culinary Preparations with the «Penjar» Tomato. Journal of Culinary Science & Technology, 12(3), 196-214. doi:10.1080/15428052.2014.880099 | es_ES |
dc.description.references | Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276 | es_ES |
dc.description.references | Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., & Lorenzo, P. (2015). Influence of pre-harvest factors on quality of a winter cycle, high commercial value, tomato cultivar. Scientia Horticulturae, 189, 104-111. doi:10.1016/j.scienta.2015.03.044 | es_ES |
dc.description.references | Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2005). Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2), 171-179. doi:10.1002/jsfa.2321 | es_ES |
dc.description.references | Scott, J., Myers, J., Boches, P., Nichols, C., & Angell, F. (2013). Classical Genetics and Traditional Breeding. Genetics, Genomics, and Breeding of Tomato, 37-73. doi:10.1201/b14578-3 | es_ES |
dc.description.references | Tranchida-Lombardo, V., Aiese Cigliano, R., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., … Grillo, S. (2017). Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 25(2), 149-160. doi:10.1093/dnares/dsx045 | es_ES |
dc.description.references | Yamaguchi, M. (1983). Solanaceous Fruits: Tomato, Eggplant, Peppers, and Others. World Vegetables, 291-311. doi:10.1007/978-94-011-7907-2_22 | es_ES |
dc.description.references | Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.072 | es_ES |