- -

Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Figás-Moreno, María Del Rosario es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Raigón Jiménez, Mª Dolores es_ES
dc.contributor.author Pereira-Días, Leandro es_ES
dc.contributor.author Casanova-Calancha, Cristina es_ES
dc.contributor.author García-Martínez, María Dolores es_ES
dc.contributor.author Rosa-Martínez, Elena es_ES
dc.contributor.author Soler-Calabuig, Elena es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Soler Aleixandre, Salvador es_ES
dc.date.accessioned 2020-02-01T21:00:55Z
dc.date.available 2020-02-01T21:00:55Z
dc.date.issued 2018 es_ES
dc.identifier.uri http://hdl.handle.net/10251/136160
dc.description.abstract [EN] Long shelf-life tomato (Solanum lycopersicum) landraces, characterized by carrying the alc allele in the NOR. NAC locus, have been traditionally cultivated in the Mediterranean region. These materials are adapted to open field conditions under low input conditions. However, cultivation under greenhouse is expanding fueled by increasing demand of these traditional tomatoes. We hypothesize that the large diversity in the long shelf-life landraces and derived materials can be exploited for adaptation to these new cultivation conditions. We have evaluated 12 varieties (seven landraces, three selections and two hybrids) carrying the alc mutation under open field (OF) and greenhouse (GH) cultivation, and evaluated them for 52 morphological, agronomic, chemical properties, and chemical composition descriptors. All descriptors, except six morphological ones, were variable. The variety effect was the greatest contributor to variation for most morphological traits, as well as for fruit weight, fruit shape, dry matter, and soluble solids content. However, significant environmental and genotype x environment interaction were found for 36 and 42 descriptors, respectively. Fruits from GH plants had lower weight and firmness and were less red than those from OF. On average, in GH yield was 35% lower and daily fruit weight loss in post-harvest 41% higher than in OF. However, fruits from GH had on average higher dry matter and soluble solids contents, antioxidant activity, glucose, fructose, and ascorbic acid concentrations, but lower contents in lycopene and beta-carotene than those from OF. A principal components analysis clearly separated varieties according to the cultivation environment. However, the distribution pattern of varieties within each of the two clusters (GH and OF) was similar, despite the strong G x E interaction for many descriptors. Landraces from the same origin plotted in the same area of each cluster, and selections and hybrids plotted together with the landraces. The results reveal a high impact of the cultivation environment on morphological, agronomic, chemical properties, and chemical composition of Mediterranean long shelf-life traditional tomato varieties. This suggests that breeding programs specifically focused to adaptation to greenhouse conditions should be developed. es_ES
dc.description.sponsorship This work was supported by Associacio de Productors i Comercialitzadors de la Tomata de Penjar d'Alcala de Xivert. Funding was also received from the TRADITOM (Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population), G2P-SOL (Linking genetic resources, genomes, and phenotypes of Solanaceous crops) and BRESOV (Breeding for resilient, efficient, and sustainable organic vegetable production) projects. TRADITOM, G2P-SOL, and BRESOV projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 634561 (TRADITOM), 677379 (G2PSOL), and 774244 (BRESOV). ER is grateful to the Spanish Ministerio de Economia, Industria y Competitividad for a pre-doctoral grant (BES-2016-077482). MP is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva programme (FCJI-2015-24835) and to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral contract (APOSTD/2018/014). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Breeding es_ES
dc.subject Cultivation conditions es_ES
dc.subject Fruit quality es_ES
dc.subject Genotype x environment interaction es_ES
dc.subject Selection es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Yield es_ES
dc.subject.classification EDAFOLOGIA Y QUIMICA AGRICOLA es_ES
dc.subject.classification GENETICA es_ES
dc.title Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2018.01774 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2015-24835/ES/FJCI-2015-24835/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/677379/EU/Linking genetic resources, genomes and phenotypes of Solanaceous crops/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2016-077482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/774244/EU/Breeding for Resilient, Efficient and Sustainable Organic Vegetable production/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2018%2F014/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Figás-Moreno, MDR.; Prohens Tomás, J.; Raigón Jiménez, MD.; Pereira-Días, L.; Casanova-Calancha, C.; García-Martínez, MD.; Rosa-Martínez, E.... (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.01774 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2018.01774 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.relation.pasarela S\380902 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-x es_ES
dc.description.references Adams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524 es_ES
dc.description.references Ballester, A.-R., Molthoff, J., de Vos, R., Hekkert, B. te L., Orzaez, D., Fernández-Moreno, J.-P., … Bovy, A. (2009). Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiology, 152(1), 71-84. doi:10.1104/pp.109.147322 es_ES
dc.description.references Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Critical Reviews in Food Science and Nutrition, 50(5), 369-389. doi:10.1080/10408391003626322 es_ES
dc.description.references Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. doi:10.1016/j.postharvbio.2011.05.016 es_ES
dc.description.references Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3 es_ES
dc.description.references Cano, A., Acosta, M., & Arnao, M. B. (2003). Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 28(1), 59-65. doi:10.1016/s0925-5214(02)00141-2 es_ES
dc.description.references Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311 es_ES
dc.description.references Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6 es_ES
dc.description.references Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6 es_ES
dc.description.references Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044 es_ES
dc.description.references Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014 es_ES
dc.description.references Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322 es_ES
dc.description.references Csizinszky, A. A. (s. f.). Production in the open field. Tomatoes, 237-256. doi:10.1079/9780851993966.0237 es_ES
dc.description.references Diamanti, J., Battino, M., & Mezzetti, B. (2011). Breeding for Fruit Nutritional and Nutraceutical Quality. Breeding for Fruit Quality, 61-79. doi:10.1002/9780470959350.ch3 es_ES
dc.description.references Dumas, Y., Leoni, C., Portas, C. A. M., & Bièche, B. (1994). INFLUENCE OF WATER AND NITROGEN AVAILABILITY ON YIELD AND QUALITY OF PROCESSING TOMATO IN THE EUROPEAN UNION COUNTRIES. Acta Horticulturae, (376), 185-192. doi:10.17660/actahortic.1994.376.23 es_ES
dc.description.references El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. doi:10.1016/j.scienta.2014.01.010 es_ES
dc.description.references FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861 es_ES
dc.description.references Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562-571. doi:10.1016/j.scienta.2009.06.026 es_ES
dc.description.references Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039 es_ES
dc.description.references Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2014). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. doi:10.1007/s10722-014-0142-1 es_ES
dc.description.references Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083 es_ES
dc.description.references Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., & Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. doi:10.1016/j.scienta.2018.01.045 es_ES
dc.description.references Galiana-Balaguer, L., Roselló, S., & Nuez, F. (2006). Characterization and Selection of Balanced Sources of Variability for Breeding Tomato (Lycopersicon) Internal Quality. Genetic Resources and Crop Evolution, 53(5), 907-923. doi:10.1007/s10722-004-6696-6 es_ES
dc.description.references Hounsome, N., Hounsome, B., Tomos, D., & Edwards-Jones, G. (2008). Plant Metabolites and Nutritional Quality of Vegetables. Journal of Food Science, 73(4), R48-R65. doi:10.1111/j.1750-3841.2008.00716.x es_ES
dc.description.references Javanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41(2), 151-155. doi:10.1016/j.postharvbio.2006.03.008 es_ES
dc.description.references Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464 es_ES
dc.description.references Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205 es_ES
dc.description.references Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463-469. doi:10.1016/j.scienta.2017.09.046 es_ES
dc.description.references Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-y es_ES
dc.description.references Mercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5 es_ES
dc.description.references Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017 es_ES
dc.description.references Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352 es_ES
dc.description.references Ortiz, R., Crossa, J., Vargas, M., & Izquierdo, J. (2006). Studying the effect of environmental variables on the genotype × environment interaction of tomato. Euphytica, 153(1-2), 119-134. doi:10.1007/s10681-006-9248-7 es_ES
dc.description.references Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., … Flôres, S. H. (2017). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. doi:10.1111/jfpp.13326 es_ES
dc.description.references Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1 es_ES
dc.description.references Pascual, B., Maroto, J. V., Sanbautista, A., López-Galarza, S., & Alagarda, J. (2000). Influence of watering on the yield and cracking of cherry, fresh-market and processing tomatoes. The Journal of Horticultural Science and Biotechnology, 75(2), 171-175. doi:10.1080/14620316.2000.11511218 es_ES
dc.description.references Peet, M. M., & Welles, G. (s. f.). Greenhouse tomato production. Tomatoes, 257-304. doi:10.1079/9780851993966.0257 es_ES
dc.description.references Rick, C. M. (1967). Fruit and pedicel characters derived from Galápagos Tomatoes’. Economic Botany, 21(2), 171-184. doi:10.1007/bf02897867 es_ES
dc.description.references RodrÍGuez-Burruezo, S., Prohens, J., RosellÓ, J., & Nuez, F. (2005). «Heirloom» varieties as sources of variation for the improvement of fruit quality in greenhouse-grown tomatoes. The Journal of Horticultural Science and Biotechnology, 80(4), 453-460. doi:10.1080/14620316.2005.11511959 es_ES
dc.description.references Romero del Castillo, R., Puig-Pey, M., Biarnés, J., Vilaseca, H., Simó, J., Plans, M., … Casañas, F. (2014). Using Trendsetting Chefs to Design New Culinary Preparations with the «Penjar» Tomato. Journal of Culinary Science & Technology, 12(3), 196-214. doi:10.1080/15428052.2014.880099 es_ES
dc.description.references Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276 es_ES
dc.description.references Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., & Lorenzo, P. (2015). Influence of pre-harvest factors on quality of a winter cycle, high commercial value, tomato cultivar. Scientia Horticulturae, 189, 104-111. doi:10.1016/j.scienta.2015.03.044 es_ES
dc.description.references Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2005). Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2), 171-179. doi:10.1002/jsfa.2321 es_ES
dc.description.references Scott, J., Myers, J., Boches, P., Nichols, C., & Angell, F. (2013). Classical Genetics and Traditional Breeding. Genetics, Genomics, and Breeding of Tomato, 37-73. doi:10.1201/b14578-3 es_ES
dc.description.references Tranchida-Lombardo, V., Aiese Cigliano, R., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., … Grillo, S. (2017). Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 25(2), 149-160. doi:10.1093/dnares/dsx045 es_ES
dc.description.references Yamaguchi, M. (1983). Solanaceous Fruits: Tomato, Eggplant, Peppers, and Others. World Vegetables, 291-311. doi:10.1007/978-94-011-7907-2_22 es_ES
dc.description.references Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.072 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem