- -

Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor

Mostrar el registro completo del ítem

Culebras, M.; Sanchis Sánchez, MJ.; Beaucamp, A.; Carsí Rosique, M.; Kandola, BK.; Horrocks, AR.; Panzetti, G.... (2018). Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor. Green Chemistry. 20(19):4461-4472. https://doi.org/10.1039/c8gc01577e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/136409

Ficheros en el ítem

Metadatos del ítem

Título: Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor
Autor: Culebras, Mario Sanchis Sánchez, María Jesús Beaucamp, Anne Carsí Rosique, Marta Kandola, Baljinder K. Horrocks, A. Richard Panzetti, Gianmarco Birkinshaw, Colin Collins, Maurice N.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Understanding the thermal behaviour of lignin is crucial in order to realise its valorisation as an engineering polymer. Two hardwood lignins, organosolv (OSL) and chemically modified kraft lignin (ML) have been chosen ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Green Chemistry. (issn: 1463-9262 )
DOI: 10.1039/c8gc01577e
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c8gc01577e
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/720707/EU/Lignin Based Carbon Fibres for Composites/
info:eu-repo/grantAgreement/MINECO//MAT2015-63955-R/ES/NANOESTRUCTURAS SEMICONDUCTORAS Y NANOCOMPOSITES PARA LA RECUPERACION ENERGETICA/
Agradecimientos:
Mario Culebras, Anne Beaucamp, Baljinder K. Kandola, A. Richard Horrocks, Gianmarco Panzetti and Maurice N Collins acknowledge the funding received from the BioBased Industries Joint Undertaking under the European Union's ...[+]
Tipo: Artículo

References

Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233-269. doi:10.1016/j.pmatsci.2017.12.001

Barakat, A., Monlau, F., Steyer, J.-P., & Carrere, H. (2012). Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresource Technology, 104, 90-99. doi:10.1016/j.biortech.2011.10.060

P. Pessala , E.Schultz , S.Luukkainen , S.Herve , J.Knuutinen and J.Paasivirta , Pulp & paper mill effluent: environmental fate & effects , 2004 , pp. 319–330 [+]
Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233-269. doi:10.1016/j.pmatsci.2017.12.001

Barakat, A., Monlau, F., Steyer, J.-P., & Carrere, H. (2012). Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresource Technology, 104, 90-99. doi:10.1016/j.biortech.2011.10.060

P. Pessala , E.Schultz , S.Luukkainen , S.Herve , J.Knuutinen and J.Paasivirta , Pulp & paper mill effluent: environmental fate & effects , 2004 , pp. 319–330

Hossain, M. M., Scott, I. M., McGarvey, B. D., Conn, K., Ferrante, L., Berruti, F., & Briens, C. (2013). Toxicity of lignin, cellulose and hemicellulose-pyrolyzed bio-oil combinations: Estimating pesticide resources. Journal of Analytical and Applied Pyrolysis, 99, 211-216. doi:10.1016/j.jaap.2012.07.008

Wang, C., Kelley, S. S., & Venditti, R. A. (2016). Lignin-Based Thermoplastic Materials. ChemSusChem, 9(8), 770-783. doi:10.1002/cssc.201501531

Mainka, H., Täger, O., Körner, E., Hilfert, L., Busse, S., Edelmann, F. T., & Herrmann, A. S. (2015). Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology, 4(3), 283-296. doi:10.1016/j.jmrt.2015.03.004

Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews, 49, 871-906. doi:10.1016/j.rser.2015.04.091

Zhu, H., Luo, W., Ciesielski, P. N., Fang, Z., Zhu, J. Y., Henriksson, G., … Hu, L. (2016). Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 116(16), 9305-9374. doi:10.1021/acs.chemrev.6b00225

Effendi, A., Gerhauser, H., & Bridgwater, A. V. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 12(8), 2092-2116. doi:10.1016/j.rser.2007.04.008

De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., & Audisio, G. (2003). Flame retardants for polypropylene based on lignin. Polymer Degradation and Stability, 79(1), 139-145. doi:10.1016/s0141-3910(02)00266-5

Zhang, R., Xiao, X., Tai, Q., Huang, H., & Hu, Y. (2012). Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polymer Engineering & Science, 52(12), 2620-2626. doi:10.1002/pen.23214

Costes, L., Laoutid, F., Brohez, S., Delvosalle, C., & Dubois, P. (2017). Phytic acid–lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide. European Polymer Journal, 94, 270-285. doi:10.1016/j.eurpolymj.2017.07.018

Pan, X., Kadla, J. F., Ehara, K., Gilkes, N., & Saddler, J. N. (2006). Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger:  Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 54(16), 5806-5813. doi:10.1021/jf0605392

Chae, H. G., & Kumar, S. (2008). Making Strong Fibers. Science, 319(5865), 908-909. doi:10.1126/science.1153911

G. F. Zakis , Functional analysis of lignins and their derivatives , Atlanta , 1994

Garden, L., & Pethrick, R. A. (2017). Critique of dielectric cure monitoring in epoxy resins – Does the method work for commercial formulations? International Journal of Adhesion and Adhesives, 74, 6-14. doi:10.1016/j.ijadhadh.2016.12.005

Jakobsen, J., Skordos, A., James, S., Correia, R. G., & Jensen, M. (2015). In-situ Curing Strain Monitoring of a Flat Plate Residual Stress Specimen Using a Chopped Stand Mat Glass/Epoxy Composite as Test Material. Applied Composite Materials, 22(6), 805-822. doi:10.1007/s10443-015-9437-4

A. Schönhals and F.Kremer , in Broadband dielectric spectroscopy , Springer , 2003 , pp. 59–98

Perticaroli, S., Mostofian, B., Ehlers, G., Neuefeind, J. C., Diallo, S. O., Stanley, C. B., … Nickels, J. D. (2017). Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Physical Chemistry Chemical Physics, 19(38), 25859-25869. doi:10.1039/c7cp04013j

Sait, H. H., & Salema, A. A. (2015). Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies. Fuel, 161, 239-247. doi:10.1016/j.fuel.2015.08.058

Salema, A. A., Ani, F. N., Mouris, J., & Hutcheon, R. (2017). Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process. Fuel Processing Technology, 166, 164-173. doi:10.1016/j.fuproc.2017.06.006

Guidara, S., Feki, H., & Abid, Y. (2016). High-temperature dehydration behavior and ionic conduction of 2,5-dimethylanilinium chloride monohydrate. Journal of Alloys and Compounds, 672, 86-92. doi:10.1016/j.jallcom.2016.02.110

Bellucci, F., Valentino, M., Monetta, T., Nicodemo, L., Kenny, J., Nicolais, L., & Mijovic, J. (1994). Impedance spectroscopy of reactive polymers. 1. Journal of Polymer Science Part B: Polymer Physics, 32(15), 2519-2527. doi:10.1002/polb.1994.090321509

Bellucci, F., Valentino, M., Monetta, T., Nicodemo, L., Kenny, J., Nicolais, L., & Mijovic, J. (1995). Impedance spectroscopy of reactive polymers. 2. Multifunctional epoxy/amine formulations. Journal of Polymer Science Part B: Polymer Physics, 33(3), 433-443. doi:10.1002/polb.1995.090330312

Mijović, J., Bellucci, F., & Nicolais, L. (1995). Impedance Spectroscopy of Reactive Polymers: Correlations with Chemorheology during Network Formation. Journal of The Electrochemical Society, 142(4), 1176-1182. doi:10.1149/1.2044148

Gallone, G., Levita, J., Mijovic, S., Andjelic, S., & Rolla, P. A. (1998). Anomalous trends in conductivity during epoxy—amine reactions. Polymer, 39(11), 2095-2102. doi:10.1016/s0032-3861(97)00528-4

Šantić, A., Wrobel, W., Mutke, M., Banhatti, R. D., & Funke, K. (2009). Frequency-dependent fluidity and conductivity of an ionic liquid. Physical Chemistry Chemical Physics, 11(28), 5930. doi:10.1039/b904186a

Ghaouar, N. (2018). Comments on the analogy by adaptation of formulas between the viscosity and the electrical conductivity. Journal of Molecular Liquids, 250, 278-282. doi:10.1016/j.molliq.2017.12.020

LISPERGUER, J., PEREZ, P., & URIZAR, S. (2009). STRUCTURE AND THERMAL PROPERTIES OF LIGNINS: CHARACTERIZATION BY INFRARED SPECTROSCOPY AND DIFFERENTIAL SCANNING CALORIMETRY. Journal of the Chilean Chemical Society, 54(4). doi:10.4067/s0717-97072009000400030

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem