- -

Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Culebras, Mario es_ES
dc.contributor.author Sanchis Sánchez, María Jesús es_ES
dc.contributor.author Beaucamp, Anne es_ES
dc.contributor.author Carsí Rosique, Marta es_ES
dc.contributor.author Kandola, Baljinder K. es_ES
dc.contributor.author Horrocks, A. Richard es_ES
dc.contributor.author Panzetti, Gianmarco es_ES
dc.contributor.author Birkinshaw, Colin es_ES
dc.contributor.author Collins, Maurice N. es_ES
dc.date.accessioned 2020-02-06T21:02:10Z
dc.date.available 2020-02-06T21:02:10Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1463-9262 es_ES
dc.identifier.uri http://hdl.handle.net/10251/136409
dc.description.abstract [EN] Understanding the thermal behaviour of lignin is crucial in order to realise its valorisation as an engineering polymer. Two hardwood lignins, organosolv (OSL) and chemically modified kraft lignin (ML) have been chosen to represent important classes of renewable and abundant raw materials. The relationship between ionic mobility and viscosity in OSL and ML has been studied. The rheological results have been interpreted in terms of the competitive processes of thermal plasticisation and stiffening through crosslinking. Results show that with OSL, crosslinking proceeds relatively rapidly, and this is consistent with its more reactive structure. Higher molecular weight (M-w) influenced the melt stability as cross-linking kinetics was reduced and this was attributed to the reduction of chain ends available for cross-linking reactions. Scanning calorimetry has shown that both materials are glassy and pass through the glass transition between 100 degrees C and 115 degrees C, with the higher molecular weight modified material having a slightly higher T-g. Both lignins show pronounced maxima in the Gram-Schmidt plots for methane or methanol around 400 degrees C. However, a significant difference between the materials is observed with the detection of a strong carbonyl peak in the evolution products of the ML, which is attributed to the scission of the hydroxypropyl substituent present in the ML structure. The differences in the degradation processes are further reflected in the dielectric properties of the partially degraded materials where loss maxima occur at different temperatures and show different degrees of frequency dependence. An important observation is the difference in conductivity, where higher values for OSL are attributed to the cross-linking between adjacent benzene rings, whereas with the ML, a lower conductivity is associated with intrinsically less conductive intermolecular linkages. These results demonstrate that the thermal decomposition of the two lignins follows significantly different paths at the molecular level. With the more reactive OSL, it appears to be the case that there is a greater tendency to form direct ring to ring crosslinks and this is very significant for the properties of the intended end product. es_ES
dc.description.sponsorship Mario Culebras, Anne Beaucamp, Baljinder K. Kandola, A. Richard Horrocks, Gianmarco Panzetti and Maurice N Collins acknowledge the funding received from the BioBased Industries Joint Undertaking under the European Union's Horizon 2020 research and innovation programme grant agreement no. 720707. MC and MJS are thankful to the Spanish Ministerio de Economia y Competitividad (MAT2015-63955-R) for the partial financial help. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Green Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8gc01577e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720707/EU/Lignin Based Carbon Fibres for Composites/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-63955-R/ES/NANOESTRUCTURAS SEMICONDUCTORAS Y NANOCOMPOSITES PARA LA RECUPERACION ENERGETICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Culebras, M.; Sanchis Sánchez, MJ.; Beaucamp, A.; Carsí Rosique, M.; Kandola, BK.; Horrocks, AR.; Panzetti, G.... (2018). Understanding the thermal and dielectric response of organosolv and modified kraft lignin as a carbon fibre precursor. Green Chemistry. 20(19):4461-4472. https://doi.org/10.1039/c8gc01577e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8gc01577e es_ES
dc.description.upvformatpinicio 4461 es_ES
dc.description.upvformatpfin 4472 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 19 es_ES
dc.relation.pasarela S\378782 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Figueiredo, P., Lintinen, K., Hirvonen, J. T., Kostiainen, M. A., & Santos, H. A. (2018). Properties and chemical modifications of lignin: Towards lignin-based nanomaterials for biomedical applications. Progress in Materials Science, 93, 233-269. doi:10.1016/j.pmatsci.2017.12.001 es_ES
dc.description.references Barakat, A., Monlau, F., Steyer, J.-P., & Carrere, H. (2012). Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresource Technology, 104, 90-99. doi:10.1016/j.biortech.2011.10.060 es_ES
dc.description.references P. Pessala , E.Schultz , S.Luukkainen , S.Herve , J.Knuutinen and J.Paasivirta , Pulp & paper mill effluent: environmental fate & effects , 2004 , pp. 319–330 es_ES
dc.description.references Hossain, M. M., Scott, I. M., McGarvey, B. D., Conn, K., Ferrante, L., Berruti, F., & Briens, C. (2013). Toxicity of lignin, cellulose and hemicellulose-pyrolyzed bio-oil combinations: Estimating pesticide resources. Journal of Analytical and Applied Pyrolysis, 99, 211-216. doi:10.1016/j.jaap.2012.07.008 es_ES
dc.description.references Wang, C., Kelley, S. S., & Venditti, R. A. (2016). Lignin-Based Thermoplastic Materials. ChemSusChem, 9(8), 770-783. doi:10.1002/cssc.201501531 es_ES
dc.description.references Mainka, H., Täger, O., Körner, E., Hilfert, L., Busse, S., Edelmann, F. T., & Herrmann, A. S. (2015). Lignin – an alternative precursor for sustainable and cost-effective automotive carbon fiber. Journal of Materials Research and Technology, 4(3), 283-296. doi:10.1016/j.jmrt.2015.03.004 es_ES
dc.description.references Lupoi, J. S., Singh, S., Parthasarathi, R., Simmons, B. A., & Henry, R. J. (2015). Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews, 49, 871-906. doi:10.1016/j.rser.2015.04.091 es_ES
dc.description.references Zhu, H., Luo, W., Ciesielski, P. N., Fang, Z., Zhu, J. Y., Henriksson, G., … Hu, L. (2016). Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications. Chemical Reviews, 116(16), 9305-9374. doi:10.1021/acs.chemrev.6b00225 es_ES
dc.description.references Effendi, A., Gerhauser, H., & Bridgwater, A. V. (2008). Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renewable and Sustainable Energy Reviews, 12(8), 2092-2116. doi:10.1016/j.rser.2007.04.008 es_ES
dc.description.references De Chirico, A., Armanini, M., Chini, P., Cioccolo, G., Provasoli, F., & Audisio, G. (2003). Flame retardants for polypropylene based on lignin. Polymer Degradation and Stability, 79(1), 139-145. doi:10.1016/s0141-3910(02)00266-5 es_ES
dc.description.references Zhang, R., Xiao, X., Tai, Q., Huang, H., & Hu, Y. (2012). Modification of lignin and its application as char agent in intumescent flame-retardant poly(lactic acid). Polymer Engineering & Science, 52(12), 2620-2626. doi:10.1002/pen.23214 es_ES
dc.description.references Costes, L., Laoutid, F., Brohez, S., Delvosalle, C., & Dubois, P. (2017). Phytic acid–lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide. European Polymer Journal, 94, 270-285. doi:10.1016/j.eurpolymj.2017.07.018 es_ES
dc.description.references Pan, X., Kadla, J. F., Ehara, K., Gilkes, N., & Saddler, J. N. (2006). Organosolv Ethanol Lignin from Hybrid Poplar as a Radical Scavenger:  Relationship between Lignin Structure, Extraction Conditions, and Antioxidant Activity. Journal of Agricultural and Food Chemistry, 54(16), 5806-5813. doi:10.1021/jf0605392 es_ES
dc.description.references Chae, H. G., & Kumar, S. (2008). Making Strong Fibers. Science, 319(5865), 908-909. doi:10.1126/science.1153911 es_ES
dc.description.references G. F. Zakis , Functional analysis of lignins and their derivatives , Atlanta , 1994 es_ES
dc.description.references Garden, L., & Pethrick, R. A. (2017). Critique of dielectric cure monitoring in epoxy resins – Does the method work for commercial formulations? International Journal of Adhesion and Adhesives, 74, 6-14. doi:10.1016/j.ijadhadh.2016.12.005 es_ES
dc.description.references Jakobsen, J., Skordos, A., James, S., Correia, R. G., & Jensen, M. (2015). In-situ Curing Strain Monitoring of a Flat Plate Residual Stress Specimen Using a Chopped Stand Mat Glass/Epoxy Composite as Test Material. Applied Composite Materials, 22(6), 805-822. doi:10.1007/s10443-015-9437-4 es_ES
dc.description.references A. Schönhals and F.Kremer , in Broadband dielectric spectroscopy , Springer , 2003 , pp. 59–98 es_ES
dc.description.references Perticaroli, S., Mostofian, B., Ehlers, G., Neuefeind, J. C., Diallo, S. O., Stanley, C. B., … Nickels, J. D. (2017). Structural relaxation, viscosity, and network connectivity in a hydrogen bonding liquid. Physical Chemistry Chemical Physics, 19(38), 25859-25869. doi:10.1039/c7cp04013j es_ES
dc.description.references Sait, H. H., & Salema, A. A. (2015). Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies. Fuel, 161, 239-247. doi:10.1016/j.fuel.2015.08.058 es_ES
dc.description.references Salema, A. A., Ani, F. N., Mouris, J., & Hutcheon, R. (2017). Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process. Fuel Processing Technology, 166, 164-173. doi:10.1016/j.fuproc.2017.06.006 es_ES
dc.description.references Guidara, S., Feki, H., & Abid, Y. (2016). High-temperature dehydration behavior and ionic conduction of 2,5-dimethylanilinium chloride monohydrate. Journal of Alloys and Compounds, 672, 86-92. doi:10.1016/j.jallcom.2016.02.110 es_ES
dc.description.references Bellucci, F., Valentino, M., Monetta, T., Nicodemo, L., Kenny, J., Nicolais, L., & Mijovic, J. (1994). Impedance spectroscopy of reactive polymers. 1. Journal of Polymer Science Part B: Polymer Physics, 32(15), 2519-2527. doi:10.1002/polb.1994.090321509 es_ES
dc.description.references Bellucci, F., Valentino, M., Monetta, T., Nicodemo, L., Kenny, J., Nicolais, L., & Mijovic, J. (1995). Impedance spectroscopy of reactive polymers. 2. Multifunctional epoxy/amine formulations. Journal of Polymer Science Part B: Polymer Physics, 33(3), 433-443. doi:10.1002/polb.1995.090330312 es_ES
dc.description.references Mijović, J., Bellucci, F., & Nicolais, L. (1995). Impedance Spectroscopy of Reactive Polymers: Correlations with Chemorheology during Network Formation. Journal of The Electrochemical Society, 142(4), 1176-1182. doi:10.1149/1.2044148 es_ES
dc.description.references Gallone, G., Levita, J., Mijovic, S., Andjelic, S., & Rolla, P. A. (1998). Anomalous trends in conductivity during epoxy—amine reactions. Polymer, 39(11), 2095-2102. doi:10.1016/s0032-3861(97)00528-4 es_ES
dc.description.references Šantić, A., Wrobel, W., Mutke, M., Banhatti, R. D., & Funke, K. (2009). Frequency-dependent fluidity and conductivity of an ionic liquid. Physical Chemistry Chemical Physics, 11(28), 5930. doi:10.1039/b904186a es_ES
dc.description.references Ghaouar, N. (2018). Comments on the analogy by adaptation of formulas between the viscosity and the electrical conductivity. Journal of Molecular Liquids, 250, 278-282. doi:10.1016/j.molliq.2017.12.020 es_ES
dc.description.references LISPERGUER, J., PEREZ, P., & URIZAR, S. (2009). STRUCTURE AND THERMAL PROPERTIES OF LIGNINS: CHARACTERIZATION BY INFRARED SPECTROSCOPY AND DIFFERENTIAL SCANNING CALORIMETRY. Journal of the Chilean Chemical Society, 54(4). doi:10.4067/s0717-97072009000400030 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem